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Negative life events, such as the death of a loved one, are an unavoidable part of life.

These events can be overwhelmingly stressful andmay lead to the development of mental

health disorders. To mitigate these adverse developments, prior literature has utilized

measures of psychological responses to negative life events to better understand their

effects on mental health. However, psychological changes represent only one aspect of

an individual’s potential response. We posit measuring additional dimensions of health,

such as physical health, may also be beneficial, as physical health itself may be affected

by negative life events and measuring its response could provide context to changes in

mental health. Therefore, the primary aim of this work was to quantify how an individual’s

physical health changes in response to negative life events by testing for deviations in

their physiological and behavioral state (PB-state). After capturing post-event, PB-state

responses, our second aim sought to contextualize changes within known factors of

psychological response to negative life events, namely coping strategies. To do so, we

utilized a cohort of professionals across the United States monitored for 1 year and who

experienced a negative life event while under observation. Garmin Vivosmart-3 devices

provided a multidimensional representation of one’s PB-state by collecting measures of

resting heart rate, physical activity, and sleep. To test for deviations in PB-state following

negative life events, One-Class Support Vector Machines were trained on a window of

time prior to the event, which established a PB-state baseline. The model then evaluated

participant’s PB-state on the day of the life event and each day that followed, assigning

each day a level of deviance relative to the participant’s baseline. Resulting response

curves were then examined in association with the use of various coping strategies using

Bayesian gamma-hurdle regression models. The results from our objectives suggest that

physical determinants of health also deviate in response to negative life events and that

these deviations can be mitigated through different coping strategies. Taken together,

these observations stress the need to examine physical determinants of health alongside

psychological determinants when investigating the effects of negative life events.
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1. INTRODUCTION

Ranging from the death of a loved one to injury or illness,
negative events are an unavoidable part of life (1). These
events are not only overwhelming stressful, they can also
have prolonged adverse effects, such as the development of
mental health disorders, including depression, anxiety, and Post-
traumatic Stress Disorder (PTSD) (2–4). Given their distressing
and inevitable nature, a wealth of research has developed around
the response to negative life events in an effort to understand how
the long-term impact of these events may be mitigated (1, 5).

Traditionally, investigations into the consequences of
negative life events have focused on capturing the individual’s
psychological response (5). To accomplish this, studies have
utilized a variety of self-report psychological measures ranging
from daily levels of positive and negative affect to yearly reports
of life satisfaction (6, 7). While, these efforts have succeeded
in quantifying psychological responses to negative life events,
the mental effects of negative life events, though important,
represent only one dimension of our health. Notably, a person’s
physical health may also be affected by negative life events;
however, this dimension has yet to be thoroughly studied.

Investigations into the effects of negative life events on
physical health are important for several reasons. First, there is
evidence that considerable variance exists in how people respond
to negative life events, suggesting that while not everyone
will develop prolonged mental health complications, negative
consequences of these events may still be experienced in other
ways (5). For example, just as these events may lead to increased
negative affect or the development of PTSD in some, so toomight
they lead to poor sleep or diminished physical activity in others.
With investigations primarily targeting psychological factors, the
latter may go unobserved in large-scale studies. Second, studying
physical health may also supplement psychological research,
given the well-established connections between physical and
mental health, such as increased exercise reducing depressive
symptoms and poor sleep associated with increased odds of
depression and PTSD (6, 8–13). Including these physical factors
may provide additional context to the presence (or absence) of
adverse mental health effects following a negative life event (14).

To quantify these physical health factors, traditional self-
report surveys have often been utilized; however, such reports are
subject to recall bias and inability to capture real-time responses.
Instead, recent advancements in wearable technology provide
the opportunity to capture attributes of physical health in a
continuous and unobtrusive manner, allowing for measures such
as resting heart rate, physical activity, and sleep to be captured
passively and long term (15–17).

This article serves to leverage this technology to capture
attributes of physical health and address this gap in negative
life events literature. Our study features a cohort of working
professionals located throughout the United States who
were observed via Garmin fitness trackers for 1 year and
retrospectively recorded any negative life events that occurred
while under observation. Utilizing these cohorts’ data, we aim
to answer two research questions. The first question (RQ1) asks
Does an individual’s physiological and behavioral state deviate

following a negative life event? By capturing physiological and
behavioral responses to negative life events, we can begin to
understand whether attributes of one’s physical health can also
be perturbed following the event. Once these physical responses
to negative life events have been quantified, our secondary aim
seeks to assess the relationship between the varying trajectories
of these responses and the use of coping strategies. Specifically,
the second research question (RQ2) asks Does the magnitude and
duration of deviation associate with how the individual copes with
the negative life event? Coping strategies often depict how people
mitigate and solve stressful encounters, and have been organized
by (18) into 14 different categories (19, 20). Addressing this
question will seek to contextualize individual’s physical responses
within known factors of psychological responses to negative
events, beginning to bridge these two dimensions of health with
regard to negative life events.

2. MATERIALS AND METHODS

2.1. Study
The data utilized in this article come from the Tesserae study,
which recruited 757 participants throughout different companies
across the United States, concentrated around four major
organizations (21). The study followed participants for 1 year,
collecting demographics, psychometrics, fitness tracker data, and
life events. Demographics, psychometrics, and life events were
collected through surveys given at the beginning and end of the
study. Participants’ heart rate, physical activity, and sleep were
captured through Garmin Vivosmart 3 fitness trackers. To ensure
completeness in the data collection, participants were required
to wear their Garmin 80% of the time and received monetary
compensation if this threshold was met. For a complete detailing
of the study, we refer to the reader to (21).

2.2. Data
To address the underlying research questions presented in this
article, two primary sources of data were required: fitness tracker
and survey data. Details for each are provided in this section.

2.2.1. Fitness Tracker Measures
To capture an individual’s physiological and behavioral state, we
utilized threemeasures monitored by the Garmin fitness trackers,
specifically resting heart rate, physical activity, and sleep. We
briefly summarize the importance of each respective measure and
detail how they are computed via the Garmin devices.

- Resting Heart Rate: Resting heart rate has become a well-
established biomarker for cardiovascular health. Following
an array of studies, higher RHR has been observed to be
independently associated with increased risk of all-cause and
cardiovascular mortality (15, 22–26).
Calculated on a daily basis, Garmin computes RHR as the
average of all heart rate readings recorded while the user was
asleep, excluding periods where any steps were detected or the
readings fell outside reasonable bounds (27).

- Physical Activity: An important behavior for reducing all-
cause mortality and extending life expectancy, moderate-
vigorous physical activity (MVPA), such as brisk walking or
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running, has been linked to the prevention of many chronic
diseases, as well as boosting the immune system and lowering
stress levels (16, 28–33).
Dailyminutes ofMVPAwere defined using Garmin’s “Intensity
Minutes” measure. Garmin notes these minutes are calculated
based on heart rate: comparing the individual’s current rate to
their average resting heart rate, as well as number of steps taken
per minute (34).

- Sleep duration: Sleep, or lack thereof, has been repeatedly
linked to adverse medical conditions and decreased life
expectancy, as such, ensuring 7–9 h of sleep per night
is critical to maintaining a person’s personal health and
wellness (17, 35–37).
Nightly hours of sleep were computed by Garmin through a
combination of the device’s heart rate sensor and accelerometer
to determine bedtimes and waketimes (38).

In combination, these health measures provide a
multidimensional, daily representation of an individual’s
physiological and behavioral state. For brevity, we further
reference this representation as a person’s PB-state. To ensure
these measures capture different aspects of an individual’s PB-
state, we conducted a Pearson correlation analysis between each
pair of variables within each participant. Across participants,
the median (min, max) correlations were 0.02 (−0.13, 0.24)
for resting heart rate and sleep duration, 0.06 (−0.09, 0.27)
for resting heart rate and active minutes, and −0.006 (−0.12,
0.23) for active minutes and sleep duration. A detailed overview
regarding the full distributions of these correlations is provided
in Supplementary Figure 1. For the majority of participants,
we observe only weak correlations between these measures,
with the strongest observed correlation for any one individual
being r = 0.27. These observations suggest that while these
measures may be weakly associated with one another, each offers
an independent contribution toward a person’s PB-state.

2.2.2. Survey Data

2.2.2.1. Life Events
Following completion of the Tesserae study, a follow-up survey
was administered to participants. As part of this survey,
participants were asked to detail significant events they had
experienced while under observation.

For each event, participants were asked to provide additional
details including whether the event was a positive or negative
experience (referred to as “valence”), significance of the event,
date the event occurred, and their confidence that the date
they provided was correct. Valence, significance, and date
confidence were each asked on a 7-point Likert scale. For
valence, “1” indicated that the event was “Extremely Positive”
and “7” indicated that the event was “Extremely Negative.”
For significance, “1” indicated “Lowest significance” and “7”
indicated “Highest significance.” And for date confidence,
“1” indicated “Lowest confidence” and “7” indicated “Highest
confidence.” Finally, participants were asked, if willing, to
provide a brief description of the event. Such responses included
“death of a family member” and “took on a greatly increased
work load.”

2.2.2.2. COPE Inventory
Alongside the life events questions, the Brief COPE inventory
was included in the follow-up survey. Brief COPE consists of 28
questions to gauge the extent to which the respondent utilizes (if
at all) 14 different strategies for coping with adverse events (18,
39). Below, we list the 14 different strategies and provide a brief
description for each using excerpts from the author and the
specific survey questions when necessary.

Acceptance - “...accepts the reality of a stressful
situation...” (39)
Active Coping - “...the process of taking active steps to try
to remove or circumvent the stressor or to ameliorate its
effects” (39)
Behavioral Disengagement - “...reducing one’s effort to deal
with the stressor, even giving up the attempt to attain goals
with which the stressor is interfering” (39)
Denial - “...refusal to believe that the stressor exists or trying
to act as though the stressor is not real...” (39)
Humor - “...making jokes about it [the stressor]/making fun of
the situation...” (18)
Planning - “...thinking about how to cope with a stressor.
Planning involves coming up with action strategies, thinking
about what steps to take and how best to handle the
problem” (39)
Positive Reframing - “...construing a stressful transaction in
positive terms...” (39)
Religion - “...the tendency to turn to religion in times of
stress.” (39)
Self-Blame - “...criticizing oneself for responsibility in the
situation...” (18)
Self-Distraction - a focus on “...doing things to take one’s
mind off the stressor” (18)
Substance Use - “using alcohol or other drugs to feel better/to
help me get through it [the stressor]” (18)
Use of Emotional Support - “...getting moral support,
sympathy or understanding” (39)
Use of Instrumental Support - “...seeking advice, assistance,
or information.” (39)
Venting - “...the tendency to focus on whatever distress or
upset one is experiencing and to ventilate those feelings” (39)

2.3. Cohort Selection
Despite enrolling a total of 757 participants, not all were
eligible for analysis. To ensure our research questions were
appropriately and rigorously addressed, several data filtering
steps were required. A full outline of our cohort selection is
provided in Figure 1.

The first step in our cohort selection pertains to the life
events survey. Among the 757 study participants, a total of 330
participants completed the life events survey during their exit
testing. The survey asked participants to report any life events
they experienced during the study and describe them by their
valence and significance. Additionally, as this survey was asked
retrospectively, participants were also required to report their
confidence in the accuracy of date they provided for when the
event occurred. As the aim of our work was to investigate the
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FIGURE 1 | Consort diagram.

effects of major negative life events, several filtering criteria
were imposed on these three dimensions. First, only negative
life events were considered, resulting in 217 participants with
eligible events. To ensure high impact or significant life events
were studied, only negative events described as having at least
“high significance” were included, resulting in 183 participants.
Including these criteria ensured that while two participants may
have experienced different events, their perception of the valence
and significance of the events was comparable. Examples of these
life events included marital problems, financial issues, pregnancy
complications, and the death of loved ones. Finally, ensuring the
life event occurred on the exact date reported was critical, as such,
only eventsmarked as having the “Highest confidence” in the date
they occurred were considered, resulting in 77 participants with
eligible life events.

The next step in our filtering process focused on the amount of
time participants wore their fitness trackers. Criteria at this step
ensured all individuals were observed via their fitness trackers for
an amount of time sufficient to adequately capture their PB-state.
This required participants to have worn their device for at least
80% of the days they were observed before and after the negative
life event (we elaborate on these “before” and “after” time spans in
the next section) and for at least 80% of each day (19 out of 24 h).
This 80% threshold was utilized as it has previously been shown

to provide reasonable representations of daily of physical activity
and sleep (40). Following this step, a total of 31 participants were
excluded, resulting in 46 participants.

Lastly, one participant was removed as they did not complete
the COPE survey, resulting in a final cohort of 45 participants.

Among this cohort were a total of 26 (57%) females and 19
(42%) males. The age distribution for this cohort was (Min: 23;
Q1: 28, Median: 37, Q3: 47, Max: 63).

2.4. Analysis
2.4.1. Quantifying Response to Negative Life Events

2.4.1.1. Experiment Setup
To determine whether an individual’s PB-state deviated in
response to a negative life event (RQ1), it was first necessary to
establish each participants “normal” or baseline PB-state prior
to the negative life event. This baseline would allow us to assess
the degree of deviation from this state for each respective day
following the negative life event.

To make these comparisons, participant’s multivariate time
series, composed of daily measures of resting heart rate, physical
activity, and sleep, were partitioned into two windows relative to
when the negative life event occurred. First, a 60-day pre-event
time window encompassed the days leading up to the negative
life event, providing the time-span to establish a baseline. Second,
a 15 day post-event window provided the days to be compared
against the baseline to assess deviations. Despite the post-event
window label, we clarify that the post-event window includes
the day of the negative life event. Utilizing these windows also
ensured that all participants were compared in the same manner.

Finally, we note that while participants could mark multiple
significant negative life events throughout their time in the
study, we focused only on the first significant negative life event
they recorded. This ensured a significant negative life event
was not present in the data used to establish a participant’s
baseline PB-state.

2.4.1.2. Data Pre-processing
Before making comparisons between the pre- and post-event
windows, several data pre-processing steps were necessary.
Referring back to our cohort selection, all participants were
required to have worn their fitness tracker for at least 80% of
the days in the pre- and post-event windows, respectively. This
threshold ensured an accurate PB-state baseline was established
and a sufficient number of days were available to capture
the person’s response to the negative life event. Within both
these windows, any missing daily measures of resting heart
rate, physical activity, or sleep duration were imputed using
linear interpolation.

Our next step was to address the seasonality and stationarity
of the time series data; this would ensure days considered
“deviations” were not simply due to the presence of trends
in the data or cyclic changes manifesting from the shift
between weekdays and weekends. Seasonality was addressed by
computing the mean value for each univariate time series for
each day of the week and subtracting the mean value from each
respective day (41). The deseasonalized time series were then
tested for stationarity using an Augmented Dickey-Fuller test on
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each univariate time series (42). Results of these tests indicated all
time series were stationary (α = 0.05).

Lastly, each participant’s time series was normalized using z-
normalization to remove the magnitude of the different variables,
ensuring one variable could not drive the presence of deviations
by shifting in greater absolute values. These data pre-processing
steps resulted in multivariate time series spanning 75 days,
composed of an individual’s normalized resting heart rate, total
MVPA minutes, and nightly sleep duration, providing a daily
representation of an individual’s PB-state.

2.4.1.3. Model Specification
To establish a baseline PB-state and measure an individual’s
response to a negative life event, we framed this task as a novelty
detection problem. The goal of novelty detection is to determine,
based on a set of training data, whether a new observation is an
inlier or outlier (aka a novelty) (43). This strategy appropriately
addressed our research question, considering a separate model
could be trained for each participant using the PB-state data in
their pre-event window. Using this learned representation as a
participant’s baseline PB-state, the model could then parse each
day in the participant’s post-event window, treating the days
as new observations and determining whether each day’s PB-
state was an inlier or outlier, relative to that participant’s learned
baseline. This sequence of estimates from the model could then
represent the participant’s response curve, with days deemed
“inliers” representing days where the PB-state was similar to
baseline and days deemed “outliers” representing days where the
PB-state deviated from the baseline.

The specific model selected for this task was a One-Class
Support Vector Machine (OCSVM). An OCSVM was ideal for
modeling this phenomenon for several reasons. First, for its
ability to account for the multivariate nature of the data by
representing a person’s daily resting heart rate, physical activity,
and sleep as points in a three-dimensional space. Second, utilizing
a Radial Basis Function (RBF) kernel allowed for non-linear
relationships between the data streams to be captured within
the pre-event data (44). Finally, the model provided a singular
metric of distance from the distribution of training data using
the learned decision boundary, effectively capturing the degree
to which each post-event day was considered an inlier or
outlier (45). Days which fell within the bounds of the decision
function (inliers) were represented by positive values, and days
which fell outside the bounds of the decision function (outliers)
were represented by negative values; the magnitude of the values
indicated the degree to which a single day was an inlier or outlier.
Classifying each day across the post-event window resulted in a
univariate sequence of values, representing the negative life event
response curve. Daily values in this sequence represented the
degree to which the individual conformed to or deviated from
their baseline PB-state.

OCSVMs were implemented using scikit-learn (v0.21.3) (46,
47). All OCSVM parameters were held constant across the
separate models trained for each participant. By holding these
parameters constant, we ensured the detection of novel (or
outlying) days did not result from variance in model parameters
between participants and arose strictly from the distribution of

their PB-state baseline. The parameter ν, which designates the
upper bound on the fraction of training errors, was set to an
arbitrarily small value (0.01) to ensure the OCSVMs trained on all
pre-event data when learning the PB-state baseline. Parameters
other than ν utilized the default settings in scikit-learn, which can
be found in the scikit-learn documentation (46, 47).

2.4.1.4. Internal Validation
Finally, to ensure any observed deviations in PB-state were
not due to random chance, an internal validation study was
conducted. The objective of this study was to compare response
curves generated following the day of a negative life event to
curves generated following a day with no event, with the latter
group of curves acting as a control group. We could reasonably
assume that if the curves from both groups are similar, than the
deviations would likely have occurred by chance. However, if
the deviations in the “life events” group were stronger than the
deviations in the “no events” group, this would provide evidence
that deviations following a negative life event may be associated
with the event.

This experiment was conducted as follows: for each individual,
we began with their full time series; representing their entire time
in the study. We then removed the 75-day window (60 days pre-
event, 15 days post-event), which was utilized for investigating
their response to a negative life event. A sliding window of 75
days then swept across their remaining time series, sliding on
a day-by-day basis, capturing all valid, contiguous 75 day time
blocks. A time block was considered valid if (1) it met the same
80% wear time threshold used in the initial analysis and (2) no
life event was present in the block.

Having collected valid time blocks for each participant, these
blocks were then bootstrapped (sampled with replacement)
10,000 times, with an OCSVMmodel training on the first 60 days
of each block and classifying the last 15 days (48). This resulted
in 10,000 no event response curves for each individual. From
these, the median response curve was then computed for each
participant, effectively estimating a generalized median response
to no event for each participant. These no event response curves
were then compared to the response curves, which resulted from
negative life events with two tests.

To determine whether a significant difference existed between
the negative life event and no event response curves, two
comparisons were made in accordance with our two response
characteristics of interest: immediate impact and short-term
trajectory, detailed in the next section. The first test is aligned
with immediate impact, assessing deviations on the first day of
the response. This was done using the non-parametric Wilcoxon
signed-rank test, comparing the paired distributions of event-day
deviations resulting from the life event to event-day responses
resulting from no event. The second test was aligned with short-
term trajectory and was performed on the sum of deviations
within the response curve to assess the cumulative deviation in
response to an event. Again, a Wilcoxon test was performed
assessing the paired distribution of cumulative deviation in
response to a negative life event to the cumulative deviation in
response to no event.
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2.4.2. Response Characteristics
Moving to RQ2, we sought to investigate how the utilization of
various coping strategies may be associated with these negative
life event response curves. This question was partitioned into
two sub-questions based on the two characteristics of the
response curve that were of interest. The first characteristic
being the degree of deviation on day 1 of the curve
or the immediate impact on PB-state in response to the
negative life event. The second, being the overall shape of
the curve or short-term trajectory spanning the 2 weeks that
followed the life event. This would answer questions such as
whether the deviations persisted? or did they quickly return
to baseline?

Using each of these characteristics as an outcome, associations
between them and each coping strategy were modeled
using a series of Bayesian regressions, while adjusting for
several potential confounding variables. We note a Bayesian
approach was taken for this analysis as previous studies
have shown Bayesian methods to yield more accurate
estimates among small data (49–52). Bayesian regressions
were implemented using the R package BRMs (53) and
statistics were derived from these models using the R package
BayesTestR (54).

Immediate Impact - The first characteristic of the response
curve we investigated was immediate impact, or response on
the day of the negative life event. This characteristic was
chosen as previous works examining response to negative
life events observed the most significant changes to occur
immediately following the event (6, 7, 55). Immediate impact
was measured by evaluating the degree of deviation a
participant experienced on the day the negative life event
occurred. As the OCSVMs provided the degree to which a day
was an inlier as well as an outlier, we truncated the degree
of all inliers to 0. Given this study was specifically focused
on deviation, knowing the degree to which a person’s PB-
state was an inlier was unnecessary, considering the model had
already determined an inlier to be representative of a person’s
normal PB-state. To more easily model these outliers, we
switched their original negative sign to positive. This resulted
in a right-skewed distribution where absolute zero represented
normal behavior and positive values represented the degree of
deviation. To appropriately model this mix of absolute zeros
and strictly positive values, we utilized a Gamma hurdle family
for our Bayesian models (53). A series of regression tests were
then performed to investigate each coping strategy covered
in the COPE inventory. Coping strategies were analyzed
separately to allow the models parameter space to better fit
recommended parameter-to-sample ratios and prevent the
correlations among these coping strategies from producing
biased estimates (56, 57). Each regression adjusted for
demographic traits: gender and age, as well as the participant’s
perceived valence and significance of the event. For each
regression, we utilized uninformative flat priors and a total of
100,000 posterior samples were drawn, ensuring the necessary
10,000 effective samples recommended for stable credible
intervals (58).

Short-term trajectory: The second characteristic of the
response curves we investigated was the short-term trajectory,
allowing us to assess whether deviations persisted across the
2 weeks following the negative life event. Once again, all
inliers were truncated at zero, but this time, outliers retained
their negative sign. To capture common response trajectories,
each individual’s response curve was first smoothed using
lowess, after which K-shape clustering was performed on the
smoothed response curves (59). This resulted in an optimal
K of two, based on silhouette score. After identifying these
two clusters, associations between response curves and coping
strategies were tested using Bayesian logistic regression. We
utilized the same procedure for adjustment variables, sampling
iterations, and credible intervals as we did for the immediate
impact characteristic.

2.4.3. Common Deviations
Having addressed the two research questions posed in this article,
we concluded with a post hoc analysis to determine whether
common deviations existed within the PB-state response to a
negative life event. Utilizing the clustering outcomes from the
previous section, we investigated whether a significant group-
level increase or decrease in resting heart rate, physical activity,
or sleep duration manifested following the negative life event.

Median values were computed for each individual within
their pre-event and post-event windows for each of these three
measures. Utilizing paired-distribution Wilcoxon tests, we tested
whether a significant difference existed in each variable between
the median pre-event values and median post-event values. Tests
were performed on each cluster of participants separately.

Before concluding the Methods section of this article, we
briefly comment on statistical significance. Given the recent
movements toward reevaluating statistical significance as a scale
rather than binary operation, we provide exact values for all data
examined and allow the reader to decide their own interpretation
of “significance” (60).

3. RESULTS

3.1. Response to Negative Life Events
To address RQ1, OCSVMs were trained on a participant’s pre-
event window to learn their baseline PB-state. These models
then parsed the participant’s post-event window, estimating
for each day, whether the observed PB-state was an inlier or
outlier, respective to the learned baseline. This sequence of
daily estimates represented the participant’s negative life event
response curve. Daily values of these response curves represented
the degree to which that day’s PB-state conformed to (represented
by positive values) or deviated from (represented by negative
values) the learned baseline, with larger positive values indicating
stronger conformity and smaller negative values indicating
stronger deviation. An aggregation of these sequences is provided
in Figure 2. The solid blue line represents the median estimate
across all participants, while the blue dashed lines represent
the 25th and 75th percentiles (the yellow lines will be covered
in the next paragraph). We observe that the median response
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FIGURE 2 | Distribution across time of negative life event response curves compared to no event response curves.

remains positive across the post-event window, while the lower
quartile is negative and slowly becomes positive over the post-
event window.

With respect to the validation study, the yellow lines in
Figure 2 represent an aggregation of response curves in which
no negative life event was present. Similar to the blue lines, the
solid yellow line represents the median and dashed yellow lines
represent the 25th and 75th percentiles. Using these two groups
of curves, we can reasonably assume that if the same degree
of deviation was found in both the yellow and blue lines, then
the deviations in the blue lines may be due to random chance,
as response curves generated when no negative life event was
present, would produce the same degree of deviation as curves
generated when an event was present.

To determine whether these response curves were
significantly different, we performed two statistical tests in
line with our two characteristics of interest. The first test
assessed immediate impact of the response. From our Wilcoxon
signed-rank test, we observed that deviations on the first day
of the curve were significantly stronger in response to the
negative life event than deviations on the first day of the curve
in response to no event (P = 0.014). The second test assessed
short-term trajectory by comparing the sum of deviations across
the response curve. Again, using a Wilcoxon test, we observed
that the sum of deviations across the negative life event response
curves were significantly stronger than the sum of deviations
across the no event response curves (P < 0.001). Overall, the
results from this internal validation analysis provide evidence
that the deviations observed following the negative life event
were not due to random chance.

3.2. Response Characteristics
Moving to RQ2, we modeled the association between two
characteristics of the negative life event responses: immediate

impact and short-term trajectory, with different coping strategies
through a series of Bayesian regressions. For both response
characteristics, we provide the median effect size and 90%
credible interval of each COPE measure. For convenience, this
information is also displayed as a coefficient plot for each
response characteristic. Additionally, we provide the probability
of direction for each measure; an index of effect existence based
on the posterior distribution which ranges from 50 to 100%.
The index represents the certainty with which an effect goes in
a given direction, such as positive or negative (54, 61). Strongly
correlated with P-values, a probability of direction of 95% is
roughly equivalent to a P-value of 0.1.

3.2.1. Immediate Impact
Observations for associations between coping strategies and
immediate impact are detailed in Figure 3, with numerical values
and probability of direction provided in Table 1. Having utilized
a gamma family for our regressions, values above 1 represent the
multiplicative increase in deviation on the day of the event, while
values below 1 represent the multiplicative decrease in deviation
on the day of the event.

Utilizing the Brief COPE inventory, we observed several
coping strategies significantly associated with less deviation.
Specifically, we observe that acceptance (OR 0.56; 90% CI: 0.35,
0.90), self-distraction (OR 0.59; 90% CI: 0.45, 0.78), planning
(OR 0.59; 90% CI: 0.48, 0.73), and active coping (OR 0.75; 90%
CI: 0.57, 0.98) were significantly associated with less deviation
regarding the immediate impact of the negative life event.

3.2.2. Short-Term Trajectory
To capture common short-term trajectories among the response
curves, K-shape clustering was utilized, producing a optimal
partition of two clusters. Figure 4 visualizes the median degree of
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FIGURE 3 | Coefficients plot of COPE measures associated with event day

deviation. Points indicate median effect size and black horizontal lines indicate

the range of the 90% credible interval.

TABLE 1 | Coefficients and probability of direction associated with event day

deviation.

Coping strategy Coefficient (90% CI) Probability of direction

Acceptance 0.56 (0.35, 0.90) 0.972

Active coping 0.75 (0.57, 0.98) 0.955

Behavioral disengagement 0.75 (0.43, 1.32) 0.811

Denial 0.36 (0.08, 1.69) 0.868

Humor 1.05 (0.78, 1.42) 0.623

Planning 0.59 (0.48, 0.73) 0.999

Positive reframing 0.80 (0.54, 1.16) 0.847

Religion 0.92 (0.63, 1.37) 0.638

Self-blame 1.12 (0.80, 1.58) 0.722

Self-distraction 0.59 (0.45, 0.78) 0.996

Substance use 1.00 (0.69, 1.45) 0.507

Use of emotional support 0.81 (0.60, 1.14) 0.846

Use of instrumental support 0.79 (0.59, 1.10) 0.880

Venting 0.91 (0.62, 1.31) 0.674

deviation for each clustering of response curves across the post-
event window. Cluster 0 (n = 17) depicts minimal deviation in
response to the negative life event, whereas Cluster 1 (n = 28)
shows an immediate deviation on the day of the negative life

event and gradual return to baseline PB-state across the following
2 weeks.

Associations between coping strategies and clusters are
provided in Table 2. A visual representation of the effect sizes
can be found in Figure 5. In both cases, values are represented
as odds ratios, with values above 1 indicating a higher likelihood
of belonging to Cluster 1, while values below 1 indicate a lower
likelihood of belonging to Cluster 1.

We observe several coping strategies significantly associated
with the cluster in which minimal deviation was observed.
Specifically, we observe that active coping (OR 0.52; 90% CI: 0.31,
0.83), substance use (OR 0.62; 90%CI: 0.41, 0.92), use of emotional
support (OR 0.46; 90% CI: 0.28, 0.72), use of instrumental support
(OR 0.50; 90% CI: 0.32, 0.76), and venting (OR 0.55; 90% CI:
0.33, 0.92) were significantly associated with increased odds
of belonging to Cluster 0. No coping strategies were observed
to be significantly associated with increased odds of belonging
to Cluster 1.

3.3. Common Deviations
Finally, our post hoc analysis focused on the three underlying
components of a person’s PB-state to assess whether common
deviations existed within the response curves. Referring to
Table 3, for Cluster 0, we observed no significant changes in
resting heart rate (P = 0.77), physical activity (P = 0.40), or sleep
(P = 0.52). For Cluster 1, however, a significant increase in resting
heart rate was observed (P = 0.06) with an average increase of 0.66
bpm in the post-event window relative to the pre-event window.
A significant decrease in physical activity was also observed (P =
0.06) with an average decrease of 4 active minutes per day. No
significant changes in sleep duration (P = 0.81) were observed
for Cluster 1.

4. DISCUSSION

4.1. Principal Findings
In this article, we aimed to answer two research questions: RQ1:
Does an individual’s physiological and behavioral state deviate
following a negative life event? RQ2: Does the magnitude and
duration of deviation associate with how the individual copes with
the negative life event?

To address RQ1, we observed two distinct groups of
participants, the first group experiencedminimal to no deviations
following a negative life event, while the second group
experienced immediate deviations, with deviations gradually
diminishing over the following 2 weeks. These observations
support our hypothesis that, in addition to psychological changes,
physiological and behavioral changes can also manifest in
response to negative life events. Such variations in response
manifestation suggest that multiple data modalities may be
necessary for detecting if and how a person may be impacted by a
negative life event. Moreover, studies that limit these modalities,
such as considering only a single psychological measure, may fail
to identify individuals affected by the event, but who do not react
in a way noticeable by that measure, potentially underestimating
the incidence of events. As such, the physical attributes measured
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FIGURE 4 | Clustered response trajectories.

by fitness trackers may be useful in capturing the true incidence
of subjects affected within a heterogeneous population.

An RQ1 post hoc analysis on these physiological and
behavioral changes was conducted: breaking down the three
measures which represented a person’s PB-state: resting heart
rate, physical activity, and sleep. Among those who experienced
deviations in their PB-state, two common changes were observed:
increases in resting heart rate and decreases in physical activity.
The increases in resting heart rate may be reflective of concurrent
psychological changes as stress and depression have shown to
elevate heart rate (62, 63). Regarding physical activity, while
the reduction was minimal, this temporary adoption of more
sedentary behaviors may be detrimental, as physical activity has
been associated with better mental health (8). These findings
suggest that overall, the physiological and behavioral changes
adopted following negative life events may have a direct impact
on one’s physical health.

Moving to RQ2, we discuss the association between PB-
state deviations and the psychological mechanisms a person
may use to cope with negative life events. Overall, we observed
that the utilization of coping strategies was generally associated
with less deviation in a person’s immediate response and short-
term trajectory. In particular, we observed “active coping” was
significantly associated with less deviation in both characteristics.
Active coping is defined within the COPE inventory as the
extent to which “[the individual has] been concentrating [their]
efforts on doing something about the situation [they’re] in”
and “taking action to try to make the situation better” (18).
In other words, the willingness of an individual to proactively
engage with and address a problem directly is strongly associated
with minimized PB-state deviation. This may suggest that taking
steps to remove/alleviate the trauma incurred from a negative
life event, through direct mitigation or solutions, concurrently
inhibits or diminishes any physiological or behavioral changes.

TABLE 2 | Coefficients and probability of direction associated with response

cluster.

Coping strategy Coefficient (90% CI) Probability of direction

Acceptance 1.05 (0.62, 1.77) 0.559

Active coping 0.52 (0.31, 0.83) 0.993

Behavioral disengagement 0.74 (0.43, 1.30) 0.813

Denial 0.95 (0.35, 2.65) 0.532

Humor 0.88 (0.63, 1.22) 0.748

Planning 0.74 (0.44, 1.23) 0.840

Positive reframing 1.04 (0.64, 1.69) 0.557

Religion 0.86 (0.64, 1.16) 0.802

Self-blame 1.01 (0.72, 1.44) 0.521

Self-distraction 1.03 (0.63, 1.71) 0.544

Substance use 0.62 (0.41, 0.92) 0.984

Use of emotional support 0.46 (0.28, 0.72) 0.999

Use of instrumental support 0.50 (0.32, 0.76) 0.998

Venting 0.55 (0.33, 0.92) 0.980

Taken together, these observations stress the need to
examine physical determinants of health alongside psychological
determinants when investigating the effects of negative life
events. Building upon these findings, future studies hold the
opportunity to measure physical and psychological reactions in
tandem, leading to a stronger understanding of the connections
between physical and psychological responses, providing context
for each. Ultimately, by leveraging these holistic views of a
person’s response to negative life events, we can move closer
toward mitigating their adverse developments.

4.2. Comparison With Previous Work
Early investigations into the effects of negative life events
focused primarily on their psychological consequences (64,
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FIGURE 5 | Coefficients plot of COPE measures associated with response

cluster. Points indicate median effect size and black horizontal lines indicate

the range of the 90% credible interval.

65). Finding associations with the development of anxiety,
depression, and PTSD, these works motivated future studies to
focus on why or how these mental health disorders may develop
following such events (66–68). Our study builds upon these
previous works by exploring a less established component of
the negative life events literature: changes in physical health,
and by relating these changes to coping strategies, explores how
these changes associate with the better understood components
of mental health.

Several previous works have begun to investigate the effects
of negative life events on different attributes of physical health.
These studies have found that levels of physical health can
moderate the negative effects of life events, while negative life
events can also lead to changes in physical activity and sleep (69–
72). Our study builds on these investigations through the
utilization of fitness trackers to provide objective and immediate
responses to these negative life events and utilizes multiple
attributes of physical health simultaneously.

Previous works have also utilized fitness trackers to measure
event response, primarily, for stress detection (73–76). Such
studies have achieved promising performance using continuous
measures of heart rate, skin conductance, and skin temperature.
Further, studies have revealed variation in individual’s

TABLE 3 | Average change in metric between pre- and post-event stratified by

cluster.

Cluster 0 Cluster 1

Mean change P-value Mean change P-value

Resting heart rate −0.20 bpm 0.77 +0.66 bpm 0.06

Daily physical activity +1.05 min 0.40 −4.10 min 0.06

Nightly sleep duration 0.10 h 0.52 +0.02 h 0.81

physiological responses, such as more blunted physiological
responses to stress (77). While these works are similar to ours in
that they measure the physiological effects of negative stimuli,
the distinction is made on the type of stimuli being studied.
Stress is a constantly applied stimuli where physiological changes
occur while it is being applied, for example, a person may be
stressed for an hour and may experience an elevated heart rate
for that hour. Negative life events, however, are a single stimuli
in which an event transpires. Our work not only captures the
physiological and behavioral changes that may arise while the
event is occurring, it also captures the lasting effects to assess
whether changes persist after the event has occurred.

4.3. Limitations
The analysis presented in this manuscript is based on a small
sample of participants, limiting the generalizability of these
findings. As such, the presented results should be considered only
as exploratory, requiring follow-up studies with larger sample
sizes across various cohorts to validate these findings.

Further, our window for observing deviations from a person’s
normal PB-state was limited to the 2 weeks following the negative
life event. While, we observed gradually diminishing deviations
over this period, future studies would benefit from a longer
observation period in general, perhaps measuring the years
leading up to and following negative life events for the assessment
of long-term changes.

Despite pre-event periods containing no significant negative
life events, events originally filtered from our analysis may
still have been present in these baseline periods. To ensure
events occurring in the baseline period did not bias our results,
a supplementary analysis was performed showing minimal
association between the presence of an event in a person’s
baseline period andwhether they experienced PB-state deviations
in response to their negative life event. A complete detailing of
this analysis is available in Supplementary Analysis 1.

Finally, it is important to note the limitations of the devices
used in this study. Comparing the devices to an ECG, high levels
of accuracy for HR monitoring have been observed, especially
when the user is at rest (78). For physical activity and sleep,
however, Garmin tended to overestimate daily MVPA and total
sleep time (79, 80). While, validation studies across larger and
more diverse cohorts are needed, current recommendations
suggest these devices provide acceptable levels of accuracy, but
should be utilized with caution (78–80).

Frontiers in Digital Health | www.frontiersin.org 10 May 2021 | Volume 3 | Article 659088

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Faust et al. Negative Events Through Fitness Trackers

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found below:
http://tesserae.nd.edu/data-sharing/.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of Notre Dame Institutional Review
Board and through reliance agreements at participating research
universities. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

LF, KF, and NC designed the study. LF, KF, and SL performed
the analysis. LF, KF, SM, SD’M, and NC performed the
interpretation of the data. LF, KF, SD’M, and NC wrote and

reviewed the manuscript. All authors approved the manuscript
for publication.

FUNDING

This research was supported in part by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), via IARPA Contract No.
2017-17042800007.

ACKNOWLEDGMENTS

We thank the entire Tesserae team for their
invaluable contributions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdgth.
2021.659088/full#supplementary-material

REFERENCES

1. Wu G, Feder A, Cohen H, Kim JJ, Calderon S, Charney DS,
et al. Understanding resilience. Front Behav Neurosci. (2013) 7:10.
doi: 10.3389/fnbeh.2013.00010

2. Mazure CM, Bruce ML, Maciejewski PK, Jacobs SC. Adverse life
events and cognitive-personality characteristics in the prediction of major
depression and antidepressant response.Am J Psychiatry. (2000) 157:896–903.
doi: 10.1176/appi.ajp.157.6.896

3. Finlay-Jones R, Brown GW. Types of stressful life event and the onset
of anxiety and depressive disorders. Psychol Med. (1981) 11:803–15.
doi: 10.1017/S0033291700041301

4. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ. Neurobiology of
resilience. Nat Neurosci. (2012) 15:1475. doi: 10.1038/nn.3234

5. Bonanno GA, Diminich ED. Annual research review: positive adjustment to
adversity-trajectories of minimal-impact resilience and emergent resilience. J
Child Psychol Psychiatry. (2013) 54:378–401. doi: 10.1111/jcpp.12021

6. Kuranova A, Booij SH, Menne-Lothmann C, Decoster J, van Winkel R,
Delespaul P, et al. Measuring resilience prospectively as the speed of affect
recovery in daily life: a complex systems perspective on mental health. BMC

Med. (2020) 18:36. doi: 10.1186/s12916-020-1500-9
7. Yap SC, Anusic I, Lucas RE. Does personality moderate reaction and

adaptation to major life events? Evidence from the British Household Panel
Survey. J Res Pers. (2012) 46:477–88. doi: 10.1016/j.jrp.2012.05.005

8. Paluska SA, Schwenk TL. Physical activity and mental health. Sports Med.
(2000) 29:167–80. doi: 10.2165/00007256-200029030-00003

9. Swinkels CM, Ulmer CS, Beckham JC, Buse N, Workgroup VMAMR,
Calhoun PS. The association of sleep duration, mental health, and health risk
behaviors among US Afghanistan/Iraq era veterans. Sleep. (2013) 36:1019–25.
doi: 10.5665/sleep.2800

10. Ohrnberger J, Fichera E, Sutton M. The relationship between physical
and mental health: a mediation analysis. Soc Sci Med. (2017) 195:42–9.
doi: 10.1016/j.socscimed.2017.11.008

11. Hays RD, Marshall GN, Wang EYI, Sherbourne CD. Four-year cross-lagged
associations between physical and mental health in the Medical Outcomes
Study. J Consult Clin Psychol. (1994) 62:441. doi: 10.1037/0022-006X.
62.3.441

12. Surtees P, Wainwright N, Luben R, Wareham N, Bingham S, Khaw
KT. Psychological distress, major depressive disorder, and risk of stroke.
Neurology. (2008) 70:788–794. doi: 10.1212/01.wnl.0000304109.18563.81

13. Nabi H, Kivimaki M, De Vogli R, Marmot MG, Singh-Manoux A. Positive
and negative affect and risk of coronary heart disease: Whitehall II prospective
cohort study. BMJ. (2008) 337:a118. doi: 10.1136/bmj.a118

14. Scheffer M, Bolhuis JE, Borsboom D, Buchman TG, Gijzel SM, Goulson D,
et al. Quantifying resilience of humans and other animals. Proc Natl Acad Sci

USA. (2018) 115:11883–90. doi: 10.1073/pnas.1810630115
15. Böhm M, Reil JC, Deedwania P, Kim JB, Borer JS. Resting heart rate: risk

indicator and emerging risk factor in cardiovascular disease.Am JMed. (2015)
128:219–28. doi: 10.1016/j.amjmed.2014.09.016

16. Li Y, Pan A, Wang DD, Liu X, Dhana K, Franco OH, et al. Impact of healthy
lifestyle factors on life expectancies in the US population. Circulation. (2018)
138:345–55. doi: 10.1161/CIRCULATIONAHA.117.032047

17. Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short
sleep duration: the evidence, the possible mechanisms, and the future. Sleep
Med Rev. (2010) 14:191–203. doi: 10.1016/j.smrv.2009.07.006

18. Carver CS. You want to measure coping but your protocol’s
too long: consider the brief cope. Int J behav Med. (1997) 4:92.
doi: 10.1207/s15327558ijbm0401_6

19. Skinner EA, Zimmer-Gembeck M. Coping. In: Friedman HS, editor.
Encyclopedia of Mental Health. 2nd ed. Oxford: Academic Press (2016). p.
350–7. doi: 10.1016/B978-0-12-397045-9.00036-7

20. Carey WB, Crocker AC, Elias ER, Coleman WL, Feldman HM.
Developmental-Behavioral Pediatrics E-Book. Philadelphia, PA: Elsevier
Health Sciences (2009).

21. Mattingly SM, Gregg JM, Audia P, Bayraktaroglu AE, Campbell AT, Chawla
NV, et al. The Tesserae project: large-scale, longitudinal, in situ, multimodal
sensing of information workers. In: Extended Abstracts of the 2019 CHI

Conference on Human Factors in Computing Systems. Glasgow (2019). p. 1–8.
doi: 10.1145/3290607.3299041

22. Zhang D, Shen X, Qi X. Resting heart rate and all-cause and cardiovascular
mortality in the general population: a meta-analysis. CMAJ. (2016)
188:E53–63. doi: 10.1503/cmaj.150535

23. Cucherat M. Quantitative relationship between resting heart rate reduction
and magnitude of clinical benefits in post-myocardial infarction: a meta-
regression of randomized clinical trials. Eur Heart J. (2007) 28:3012–9.
doi: 10.1093/eurheartj/ehm489

24. Chen Xj, Barywani SB, Hansson PO, ThunströmEÖ, RosengrenA, Ergatoudes
C, et al. Impact of changes in heart rate with age on all-cause death and
cardiovascular events in 50-year-old men from the general population. Open
Heart. (2019) 6:e000856. doi: 10.1136/openhrt-2018-000856

Frontiers in Digital Health | www.frontiersin.org 11 May 2021 | Volume 3 | Article 659088

https://www.frontiersin.org/articles/10.3389/fdgth.2021.659088/full#supplementary-material
https://doi.org/10.3389/fnbeh.2013.00010
https://doi.org/10.1176/appi.ajp.157.6.896
https://doi.org/10.1017/S0033291700041301
https://doi.org/10.1038/nn.3234
https://doi.org/10.1111/jcpp.12021
https://doi.org/10.1186/s12916-020-1500-9
https://doi.org/10.1016/j.jrp.2012.05.005
https://doi.org/10.2165/00007256-200029030-00003
https://doi.org/10.5665/sleep.2800
https://doi.org/10.1016/j.socscimed.2017.11.008
https://doi.org/10.1037/0022-006X.62.3.441
https://doi.org/10.1212/01.wnl.0000304109.18563.81
https://doi.org/10.1136/bmj.a118
https://doi.org/10.1073/pnas.1810630115
https://doi.org/10.1016/j.amjmed.2014.09.016
https://doi.org/10.1161/CIRCULATIONAHA.117.032047
https://doi.org/10.1016/j.smrv.2009.07.006
https://doi.org/10.1207/s15327558ijbm0401_6
https://doi.org/10.1016/B978-0-12-397045-9.00036-7
https://doi.org/10.1145/3290607.3299041
https://doi.org/10.1503/cmaj.150535
https://doi.org/10.1093/eurheartj/ehm489
https://doi.org/10.1136/openhrt-2018-000856
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Faust et al. Negative Events Through Fitness Trackers

25. Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Sendon JLL, et al. Resting
heart rate in cardiovascular disease. J Am Coll Cardiol. (2007) 50:823–30.
doi: 10.1016/j.jacc.2007.04.079

26. Cooney MT, Vartiainen E, Laakitainen T, Juolevi A, Dudina A, Graham IM.
Elevated resting heart rate is an independent risk factor for cardiovascular
disease in healthy men and women. Am Heart J. (2010) 159:612–9.
doi: 10.1016/j.ahj.2009.12.029

27. Ltd G. How Is Resting Heart Rate Calculated on My Garmin Watch.

(2020). Available online at: https://support.garmin.com/en-US/?faq=
F8YKCB4CJd5PG0DR9ICV3A

28. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect
of physical inactivity on major non-communicable diseases worldwide: an
analysis of burden of disease and life expectancy. Lancet. (2012) 380:219–29.
doi: 10.1016/S0140-6736(12)61031-9

29. Wen CP, Wai JPM, Tsai MK, Chen CH. Minimal amount of exercise to
prolong life: to walk, to run, or just mix it up? J Am Coll Cardiol. (2014)
5:482–4. doi: 10.1016/j.jacc.2014.05.026

30. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the
evidence. CMAJ. (2006) 174:801–9. doi: 10.1503/cmaj.051351

31. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al.
Physical activity and public health: a recommendation from the Centers
for Disease Control and Prevention and the American College of Sports
Medicine. JAMA. (1995) 273:402–7. doi: 10.1001/jama.1995.03520290054029

32. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical
activity and fitness in school-aged children and youth. Int J Behav Nutr Phys
Act. (2010) 7:40. doi: 10.1186/1479-5868-7-40

33. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al.
The physical activity guidelines for Americans. JAMA. (2018) 320:2020–8.
doi: 10.1001/jama.2018.14854

34. Ltd G. How Does the Intensity Minutes Feature Work on My Garmin

Watch. (2020). Available online at: https://support.garmin.com/en-US/?faq=
pNU9nnDzzGAHmEavp9rpY8

35. Chandola T, Ferrie JE, Perski A, Akbaraly T, Marmot MG. The effect of short
sleep duration on coronary heart disease risk is greatest among those with
sleep disturbance: a prospective study from the Whitehall II cohort. Sleep.
(2010) 33:739–44. doi: 10.1093/sleep/33.6.739

36. Quan SF, Parthasarathy S, Budhiraja R. Healthy sleep education–A salve for
obesity? J Clin Sleep Med. (2010) 6:18–9. doi: 10.5664/jcsm.27705

37. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al.
National Sleep Foundation’s updated sleep duration recommendations. Sleep
Health. (2015) 1:233–43. doi: 10.1016/j.sleh.2015.10.004

38. Ltd G. What is Advanced Sleep Monitoring in Garmin Connect.

(2020). Available online at: https://support.garmin.com/en-US/?faq=
mBRMf4ks7XAQ03qtsbI8J6

39. Carver CS, Scheier MF, Weintraub JK. Assessing coping strategies:
a theoretically based approach. J Pers Soc Psychol. (1989) 56:267.
doi: 10.1037/0022-3514.56.2.267

40. Purta R, Mattingly S, Song L, Lizardo O, Hachen D, Poellabauer C, et al.
Experiences measuring sleep and physical activity patterns across a large
college cohort with fitbits. In: Proceedings of the 2016 ACM International

Symposium on Wearable Computers. ISWC ’16. New York, NY: ACM (2016).
p. 28–35. doi: 10.1145/2971763.2971767

41. Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice.OTexts.
(2018).

42. MacKinnon JG. Critical values for cointegration tests. Queen’s Economics

Department Working Paper. Kingston, ON (2010).
43. Pimentel MA, Clifton DA, Clifton L, Tarassenko L. A review of novelty

detection. Signal Process. (2014) 99:215–49. doi: 10.1016/j.sigpro.2013.12.026
44. Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, et al.

Comparing support vector machines with Gaussian kernels to radial
basis function classifiers. IEEE Trans Signal Process. (1997) 45:2758–65.
doi: 10.1109/78.650102

45. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating
the support of a high-dimensional distribution. Neural Comput. (2001)
13:1443–71. doi: 10.1162/089976601750264965

46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: machine learning in Python. J Mach Learn Res. (2011)
12:2825–30.

47. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al.
API design for machine learning software: experiences from the scikit-learn
project. In: ECML PKDDWorkshop: Languages for Data Mining and Machine

Learning. Prague (2013). p. 108–22.
48. Politis DN, Romano JP, Wolf M. Subsampling. Berlin: Springer Science &

Business Media (1999). doi: 10.1007/978-1-4612-1554-7
49. Muthén B, Asparouhov T. Bayesian structural equation modeling: a more

flexible representation of substantive theory. Psychol Methods. (2012) 17:313.
doi: 10.1037/a0026802

50. Wagenmakers EJ, Lee M, Lodewyckx T, Iverson GJ. Bayesian versus
frequentist inference. In: F. Godlee, editor Bayesian Evaluation

of Informative Hypotheses. London: Springer (2008). p. 181–207.
doi: 10.1007/978-0-387-09612-4_9,

51. Rupp AA, Dey DK, Zumbo BD. To Bayes or not to Bayes, from whether to
when: applications of Bayesian methodology to modeling. Struct EquatModel.
(2004) 11:424–51. doi: 10.1207/s15328007sem1103_7

52. Kruschke JK, Aguinis H, Joo H. The time has come: Bayesianmethods for data
analysis in the organizational sciences. Organ Res Methods. (2012) 15:722–52.
doi: 10.1177/1094428112457829

53. Burkner PC. brms: an R package for Bayesian multilevel models using Stan. J
Stat Softw. (2017). 80:1–28. doi: 10.18637/jss.v080.i01

54. Makowski D, Ben-Shachar MS, Ludecke D. bayestestR: describing effects and
their uncertainty, existence and significance within the Bayesian framework. J
Open Source Softw. (2019) 4:1541. doi: 10.21105/joss.01541

55. O’Connor MF. Making meaning of life events: theory, evidence, and research
directions for an alternative model. OMEGA J Death Dying. (2003) 46:51–75.
doi: 10.2190/0CKD-PVQ0-T260-NTXU

56. Harrell FE Jr., Lee KL, Mark DB. Multivariable prognostic models:
issues in developing models, evaluating assumptions and adequacy,
and measuring and reducing errors. Stat Med. (1996) 15:361–87.
doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

57. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation
study of the number of events per variable in logistic regression analysis. J
Clin Epidemiol. (1996) 49:1373–9. doi: 10.1016/S0895-4356(96)00236-3

58. Kruschke J. Doing Bayesian Data Analysis: A Tutorial with

R, JAGS, and Stan. Amsterdam: Academic Press (2014).
doi: 10.1016/B978-0-12-405888-0.00008-8

59. Paparrizos J, Gravano L. k-shape: efficient and accurate clustering of
time series. In: Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. Melbourne, VIC (2015). p. 1855–70.
doi: 10.1145/2723372.2737793

60. Wasserstein RL, Schirm AL, Lazar NA.Moving to a World Beyond “p < 0.05.”
Milton Park: Taylor & Francis (2019). doi: 10.1080/00031305.2019.1583913

61. Makowski D, Ben-Shachar MS, Chen S, Lüdecke D. Indices of effect existence
and significance in the Bayesian framework. Front Psychol. (2019) 10:2767.
doi: 10.3389/fpsyg.2019.02767

62. Knight WE, Rickard NS. Relaxing music prevents stress-induced increases
in subjective anxiety, systolic blood pressure, and heart rate in healthy
males and females. J Music Ther. (2001) 38:254–72. doi: 10.1093/jmt/38.
4.254

63. Schiweck C, Lutin E, De Raedt W, Morrens M, Coppens V, Van Hoof C, et al.
Heart rate and heart rate variability as trait or state marker for depression?
Insights from a ketamine treatment paradigm. In: 33rd European College of

Neuropsychopharmacology Congress. Utrecht (2020).
64. Brown GW, Sklair F, Harris T, Birley J. Life-events and psychiatric

disorders1 Part 1: some methodological issues. Psychol Med. (1973) 3:74–87.
doi: 10.1017/S0033291700046365

65. Lloyd C. Life events and depressive disorder reviewed: I. Events
as predisposing factors. Arch Gen Psychiatry. (1980) 37:529–35.
doi: 10.1001/archpsyc.1980.01780180043004

66. Moberly NJ, Watkins ER. Ruminative self-focus, negative life
events, and negative affect. Behav Res Ther. (2008) 46:1034–9.
doi: 10.1016/j.brat.2008.06.004

67. Fresco DM, Rytwinski NK, Craighead LW. Explanatory flexibility and
negative life events interact to predict depression symptoms. J Soc Clin Psychol.
(2007) 26:595–608. doi: 10.1521/jscp.2007.26.5.595

68. Kidwai R, Mancha BE, Brown QL, Eaton WW. The effect of spirituality and
religious attendance on the relationship between psychological distress and

Frontiers in Digital Health | www.frontiersin.org 12 May 2021 | Volume 3 | Article 659088

https://doi.org/10.1016/j.jacc.2007.04.079
https://doi.org/10.1016/j.ahj.2009.12.029
https://support.garmin.com/en-US/?faq=F8YKCB4CJd5PG0DR9ICV3A
https://support.garmin.com/en-US/?faq=F8YKCB4CJd5PG0DR9ICV3A
https://doi.org/10.1016/S0140-6736(12)61031-9
https://doi.org/10.1016/j.jacc.2014.05.026
https://doi.org/10.1503/cmaj.051351
https://doi.org/10.1001/jama.1995.03520290054029
https://doi.org/10.1186/1479-5868-7-40
https://doi.org/10.1001/jama.2018.14854
https://support.garmin.com/en-US/?faq=pNU9nnDzzGAHmEavp9rpY8
https://support.garmin.com/en-US/?faq=pNU9nnDzzGAHmEavp9rpY8
https://doi.org/10.1093/sleep/33.6.739
https://doi.org/10.5664/jcsm.27705
https://doi.org/10.1016/j.sleh.2015.10.004
https://support.garmin.com/en-US/?faq=mBRMf4ks7XAQ03qtsbI8J6
https://support.garmin.com/en-US/?faq=mBRMf4ks7XAQ03qtsbI8J6
https://doi.org/10.1037/0022-3514.56.2.267
https://doi.org/10.1145/2971763.2971767
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1109/78.650102
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1007/978-1-4612-1554-7
https://doi.org/10.1037/a0026802
https://doi.org/10.1007/978-0-387-09612-4_9
https://doi.org/10.1207/s15328007sem1103_7
https://doi.org/10.1177/1094428112457829
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.21105/joss.01541
https://doi.org/10.2190/0CKD-PVQ0-T260-NTXU
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4$<$361::AID-SIM168$>$3.0.CO;2-4
https://doi.org/10.1016/S0895-4356(96)00236-3
https://doi.org/10.1016/B978-0-12-405888-0.00008-8
https://doi.org/10.1145/2723372.2737793
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1093/jmt/38.4.254
https://doi.org/10.1017/S0033291700046365
https://doi.org/10.1001/archpsyc.1980.01780180043004
https://doi.org/10.1016/j.brat.2008.06.004
https://doi.org/10.1521/jscp.2007.26.5.595
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Faust et al. Negative Events Through Fitness Trackers

negative life events. Soc Psychiatry Psychiatr Epidemiol. (2014) 49:487–97.
doi: 10.1007/s00127-013-0723-x

69. Heaney JL, Carroll D, Phillips AC. Physical activity, life events stress,
cortisol, and DHEA: preliminary findings that physical activity may buffer
against the negative effects of stress. J Aging Phys Act. (2014) 22:465–73.
doi: 10.1123/JAPA.2012-0082

70. Allender S, Hutchinson L, Foster C. Life-change events and participation in
physical activity: a systematic review. Health Promot Int. (2008) 23:160–72.
doi: 10.1093/heapro/dan012

71. Umberson D. Gender, marital status and the social control of health
behavior. Soc Sci Med. (1992) 34:907–17. doi: 10.1016/0277-9536(92)
90259-S

72. Barclay NL, Eley TC, Rijsdijk FV, Gregory AM. Dependent negative life events
and sleep quality: an examination of gene-environment interplay. Sleep Med.
(2011) 12:403–9. doi: 10.1016/j.sleep.2010.09.009

73. Sano A, Taylor S, McHill AW, Phillips AJ, Barger LK, Klerman E, et al.
Identifying objective physiological markers and modifiable behaviors for
self-reported stress and mental health status using wearable sensors and
mobile phones: observational study. J Med Internet Res. (2018) 20:e210.
doi: 10.2196/jmir.9410

74. Wijsman J, Grundlehner B, Liu H, Hermens H, Penders J. Towards
mental stress detection using wearable physiological sensors. In:
2011 Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. Boston, MA: IEEE (2011). p. 1798–801.
doi: 10.1109/IEMBS.2011.6090512

75. Can YS, Arnrich B, Ersoy C. Stress detection in daily life scenarios using smart
phones and wearable sensors: a survey. J Biomed Inform. (2019) 92:103139.
doi: 10.1016/j.jbi.2019.103139

76. de Arriba-Pérez F, Santos-Gago JM, Caeiro-Rodriguez M, Ramos-Merino
M. Study of stress detection and proposal of stress-related features using
commercial-off-the-shelf wrist wearables. J Ambient Intell Human Comput.
(2019) 10:4925–45. doi: 10.1007/s12652-019-01188-3

77. Smets E, Velazquez ER, Schiavone G, Chakroun I, D’Hondt E, De Raedt W,
et al. Large-scale wearable data reveal digital phenotypes for daily-life stress
detection. NPJ Digit Med. (2018) 1:1–10. doi: 10.1038/s41746-018-0074-9

78. Pasadyn SR, Soudan M, Gillinov M, Houghtaling P, Phelan D, Gillinov
N, et al. Accuracy of commercially available heart rate monitors in
athletes: a prospective study. Cardiovasc Diagn Ther. (2019) 9:379.
doi: 10.21037/cdt.2019.06.05

79. Tedesco S, Sica M, Ancillao A, Timmons S, Barton J, O’Flynn B. Validity
evaluation of the Fitbit Charge2 and the Garmin Vivosmart HR+ in free-
living environments in an older adult cohort. JMIR mHealth uHealth. (2019)
7:e13084. doi: 10.2196/13084

80. Keill, A. K., An, H. S., Dinkel, D. M., Lee, J. M. (2016). Validity of
wearable fitness trackers on sleep measure. Med. Sci. Sports Exerc. 48:10.
doi: 10.1249/01.mss.0000485037.05259.dd

Disclaimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Faust, Feldman, Lin, Mattingly, D’Mello and Chawla. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Digital Health | www.frontiersin.org 13 May 2021 | Volume 3 | Article 659088

https://doi.org/10.1007/s00127-013-0723-x
https://doi.org/10.1123/JAPA.2012-0082
https://doi.org/10.1093/heapro/dan012
https://doi.org/10.1016/0277-9536(92)90259-S
https://doi.org/10.1016/j.sleep.2010.09.009
https://doi.org/10.2196/jmir.9410
https://doi.org/10.1109/IEMBS.2011.6090512
https://doi.org/10.1016/j.jbi.2019.103139
https://doi.org/10.1007/s12652-019-01188-3
https://doi.org/10.1038/s41746-018-0074-9
https://doi.org/10.21037/cdt.2019.06.05
https://doi.org/10.2196/13084
https://doi.org/10.1249/01.mss.0000485037.05259.dd
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

	Examining Response to Negative Life Events Through Fitness Tracker Data
	1. Introduction
	2. Materials and Methods
	2.1. Study
	2.2. Data
	2.2.1. Fitness Tracker Measures
	2.2.2. Survey Data
	2.2.2.1. Life Events
	2.2.2.2. COPE Inventory


	2.3. Cohort Selection
	2.4. Analysis
	2.4.1. Quantifying Response to Negative Life Events
	2.4.1.1. Experiment Setup
	2.4.1.2. Data Pre-processing
	2.4.1.3. Model Specification
	2.4.1.4. Internal Validation

	2.4.2. Response Characteristics
	2.4.3. Common Deviations


	3. Results
	3.1. Response to Negative Life Events
	3.2. Response Characteristics
	3.2.1. Immediate Impact
	3.2.2. Short-Term Trajectory

	3.3. Common Deviations

	4. Discussion
	4.1. Principal Findings
	4.2. Comparison With Previous Work
	4.3. Limitations

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


