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Abstract—Over the past decade, the application of data
science techniques to clinical data has allowed practitioners and
researchers to develop a sundry of analytical models. These
models have traditionally relied on structured data drawn from
Electronic Medical Records (EMR). Yet, a large portion of
EMR data remains unstructured, primarily held within clinical
notes. While recent work has produced techniques for extracting
structured features from unstructured text, this work generally
operates under the untested assumption that all clinical text
can be processed in a similar manner. This paper provides
what we believe to be the first comprehensive evaluation of the
differences between four major sources of clinical text, providing
an evaluation of the structural, linguistic, and topical differences
among notes of each category. Our conclusions support the
premise that tools designed to extract structured data from
clinical text must account for the categories of text they process.

I. INTRODUCTION

The past decade has held witness to a significant trans-
formation of the United States healthcare industry. These
changes have affected every part of the healthcare spectrum,
from the financial organization to the daily activity of medical
professionals. One of the most prominent changes has been the
emergence and implementation of electronic medical records
(EMRs). Amidst government mandates and an increased de-
mand for collaboration between medical institutions, EMRs
have become a standard in clinical practice. The utilization
of Big Data aggregated from millions of clinical EMRs has
sparked the growth of a new field of research known as
healthcare informatics, blending together the statistical foun-
dations of data mining and machine learning, with the clinical
outcomes of traditional medical research.

Today, the emergence of healthcare informatics has en-
abled medical research to push further, transitioning from
preventative care to personalized medicine. Through the use
of analytics researchers have been able to provide medical
insights for both personalized healthcare and population health
management. Examples of such work include the prediction
of hospital readmission, the identification of adverse effects
in high-risk patients, and the creation of personalized disease
risk predictions [1]–[5]. These methods rely on the structured
clinical data such as disease diagnoses, lab tests, microbiology
results, etc. Additionally the data may also incorporate clinical
elements such as the medications delivered, and the diagnosis
and procedure codes generated as a result of patient care.

While these may appear to be a fairly complete set of med-
ical features there remains a substantial portion of the EMR
that, until recently, had been left relatively untapped. This data
resides within the text of clinical notes. Clinical notes are
documents written by the doctors, nurses and staff providing
care to a patient, and offer increased detail beyond what may
be inferred from a patient’s diagnosis codes. These notes are
generated during the standard course of care, and document
features such as of the progress of a patient’s condition, the
plan of care, medical and family history, as well as a number
of other clinical attributes. As clinical notes offer such a rich
set of ancillary data it is unsurprising that they have drawn
the attention of the healthcare informatics community. There
are in fact multiple sources of clinical text aggregated as notes
within an EMR, ranging from consultations with specialists,
to admission details, progress notes, discharge summaries, etc.

Researchers have made significant progress in the ex-
traction of clinically relevant information from these notes.
However as noted by Friedman, “most of the systems have
been developed specifically for specialized applications and for
limited domains [6]”. Recent work has attempted to expand the
scope of these techniques through the utilization of linguistic
tools such as improved lexicon, and complex grammars. How-
ever foundational work done by Harris has already established
the existence of what are known as sublanguages: “specialized
domains that exhibit specialized constraints due to limitations
of the words and relations of the subject matter” [7].

The assumption that all text extracted from the EMR can
be consumed and analyzed in the same manner, regardless of
its source, is limiting. The NLP techniques, on which these
multi-source systems are based, process data in a statistical
manner, thus their ability to produce reliable output is highly
dependent on the underlying data. It then stands to reason:
if the sources of clinical text are in some way fundamentally
different, no high-level linguistic tool will provide an accurate
or effective model. This concept is further supported by a more
recent work of Friedman, in which they present an analysis of
the implications of such specialized domain sublanguages on
the development of natural language processing systems [8].

Finally building on the concept of sublanguages, prior work
by Stetson et. al [9], provides one of the first quantitative
evaluations of structural differences between text of various
clinical corpora. Through this work we aim to take the anal-
ysis one step further, providing what we believe is the first



comprehensive analysis of the differences in clinical text with
relation to the structural, linguistic, and topical features utilized
by current NLP models. We will focus on the text of nursing
notes, physician notes, radiology and electrocardiogram (ECG)
procedure reports. These notes represent the four most preva-
lent categories of clinical text, and comprise the majority of
the patient narrative during an inpatient stay.

Contributions: We provide a brief description of document
metrics between each note category including document length
and vocabulary differences. Further, we establish the imbalance
between the categories of clinical text present in the EMR for
an average patient. Next we provide insight into the linguistic
differences between each category. We focus on a central
set of linguistic features typically utilized to differentiate
language models, including part of speech distribution, vo-
cabulary perplexity, and document similarity. Finally, utilizing
topic modeling techniques we will demonstrate the underlying
themes within each note category are highly distinct to such
an extent that they can be utilized to accurately predict the
source of previously unseen text.

II. RELATED WORK

The desire to structure clinical text has existed long before
the emergence of healthcare informatics. Initial work was
driven primarily by applications in quality assurance, medical
coding, and information retrieval. The ability to automatically
provide a consistent set of medical codes across large sets of
records was an enticing goal, allowing for both the standard-
ization of codes been institutions and for consistency between
patients [10], [11]. Further the emergence of large medical
record repositories allowed for increasingly complex research
questions. However, to answer these questions required the
ability to exact relevant patient records from the repositories.
Researchers discovered that to accomplish this task, without
the need for manual review of each record, required more de-
tailed information than was currently available in the records’
coded sections.

Work by Aronow et al. was one of the first to address
these issues directly, noting “The coded portions are used
extensively. However, the text portion of the AMRS resource is
inaccessible and virtually ignored [12].” Although successful,
this and other early work relied heavily on machine learning
and statistical inference techniques, such as k-nearest neigh-
bors and tree-based lexical structures to provide structure and
basic extraction techniques for freeform clinical text. Recent
developments in the field of natural language processing
(NLP) have allowed researchers to extend early structuring and
extraction methodologies to allow for the extraction of data
augmented with clinically accurate contextual information.
While new methods are constantly under development, some
of the most prominent techniques include boundary detection,
part of speech tagging, shallow parsing, entity recognition,
morphological reduction, and synonym substitution [13]–[17].
Further, a variety of preprocessing techniques are typically
employed to address the noise associated with the natural
language aspects of clinical text. These techniques include
inverse document frequencies, stemming, stop word removal,
and the inclusion of domain-expert annotated “meta-features”.

Prior work has noted that although “Machine learning
techniques have demonstrated remarkable results in the general

domain and hold promise for clinical information extraction,
they require large, annotated corpora for training, which are
both expensive and time-consuming to generate [18].” As a
result, research has focused on the utilization of unsupervised
or semi-supervised methods such as topic modeling in order
generate large-scale datasets without the need for professional
annotation [19]–[21]. It should be noted that a recent set
of work has focused on the extraction of features through
ontology-based models, that extract clinical data from unstruc-
tured text using expertly defined medical ontologies [22], [23].
The hierarchical nature of these ontologies may help to reduce
some of noise caused by coding variance. However, there may
be a loss in the granularity of the information extracted.

The field of clinical note mining has expanded from simple
feature extraction to the modeling of data for predictive tasks
such as prediction of a surgical procedure’s outcome, identi-
fying patients who had been diagnosed with cardiac disease,
and defining the disease severity level of rheumatoid arthritis
for use in clinical trials [24]–[26]. These models combine
advancements in NLP feature extraction with machine learning
supervised methods such as decision trees, neural networks,
and support vector machines, as well as unsupervised methods
such as association rules, k-means and hierarchical clustering
[27], [28]. Today the field continues to progress, yielding work
that pushes beyond simple prediction, into the identification of
novel artifacts. Such work includes the identification of diag-
nostic signals that may indicate heart failure, the recognition
of adverse drug effects, and even the discovery of previously
unknown comorbidies though the creation of extensive disease-
symptom networks [29]–[31].

There is also prior work focused on the identification of
differences in language use between genders, social groups
and individual personalities [32]–[34]. Further, a set of prior
work by Harris has provided strong support for the notion that
differences in language can be mathematically represented and
statistically quantified [7], [35]. Finally, there exists a set of
work that focuses on the utilization of linguistic differences to
identify various health focused outcomes. These include the
prediction of postpartum changes in emotion, and identification
of depression in college students [36], [37]. However, while
this work focuses on linguistic differences as a feature to
perform their analysis, we aim to employ these differences
to produce more accurate processing techniques for healthcare
analytics.

III. DATA

The data utilized in this work was drawn from the MIMIC
III (Multiparameter Intelligent Monitoring in Intensive Care)
database, which represents one of the largest sources of pub-
licly available electronic medical records [38]. The database
contains approximately 45,000 patient records collected be-
tween 2001 and 2012 in conjunction with Boston’s Beth
Israel Deaconess Medical Center, a 620-bed tertiary academic
medical center and a level I trauma center with 77 critical
care beds. Patient records were collected across multiple in-
tensive care units (ICU) including medical, surgical, coronary,
cardiovascular, trauma, and neonatal. Each record contains an
extensive set of clinical features including patient’s physiologic
signals, chart data, vital signs, as well as time series data
captured from a patients’ bedside monitor. Further, the records



provide the set of clinical notes recorded for a patient over their
stay. Between all patients, the database contains just over 2.4
million notes.

Each note provides an annotation denoting the specific
category of clinical text it represents, such as a nursing note
or a radiology report. For our analysis we utilize the most
prominent note categories, defined as those representing over
5% of the total note instances. This criteria provides four
distinct categories of notes: nursing notes, physician notes,
radiology and ECG reports. These categories represent two
major classes of text, clinical text (nursing, physician) and
procedural reports (radiology, ECG). Together these categories
provide an highly comprehensive view of clinical text, ac-
counting for just over 93% of all notes in the database, with
1,046,053, 141,624, 870,504 and 209,051 instances in the
nursing, physician, radiology and ECG categories respectively.

A. Preprocessing

Although the MIMIC database is well maintained, as
with most natural language tasks, the notes required a set
of preprocessing tasks to obtain text fit for analysis. First, in
compliance with standards set forth by the Health Insurance
Portability and Accountability Act the names of all patients,
doctors and nurses were deidentified, as were all dates. As an
example, the strings [**3069-3-16**], and [**Known patient
firstname **] [**Last Name (NamePattern4) 1716**] repre-
sent a deidentified date and patient name respectively. In order
to prevent the text and structure of these redacted elements
from skewing our analyses they were removed though the use
of regular expression parsing.

Next, the text was stripped of all digits. The proper han-
dling of numerical elements in text remains an open question in
the NLP community. There is debate as to the numerics should
be removed entirely, or replaced with a constant placeholder.
However in a medical context numerics can represent a mul-
titude of different entities, including dosages, weights, counts,
times, frequencies, or rates. As such, utilizing a common
placeholder would replace the numeric segments of 1-mg
tablet, a 85 kg patient, and a medication administered at 22:00
with the same linguistic element. This transformation has the
potential to incorrectly bias the interpretation of analyses,
particularly those which utilize vocabulary similarities or rely
on normalized word frequencies.

Additionally, it is well established that clinical text often
presents varying levels of fragmentation and grammatical
correctness. As such, to ensure that our analyses reflect the
variations between note categories and not the clinicians’ doc-
umentation styles, all punctuation was subsequently removed.
It should be noted that all tokenized text was converted to
lowercase lettering in an effort standardize string comparisons.
Finally a set of stopwords (high frequency, low information
words) were removed from each note. The stopword list was
comprised of standard English stopwords, augmented with a
medical stopword list obtained from NCBI PubMed [39].

IV. METHODS

This work focuses on three distinct evaluations of clinical
text. We begin with an evaluation of the structural differences
among each of the four note categories. Next we evaluate the

differences between each note category using common NLP
metrics. Finally, we investigate how the underling topics vary
within each category. The methodology for each evaluation
can be found in the respective sections below, while the results
and discussion can be found in the corresponding elements of
sections V and VI.

A. Note Structure

We began our investigation with an evaluation of docu-
ment length, focusing on the average word count of each
category. The text of each note was tokenized using the
Natural Language Toolkit (NLTK) python package [40]. The
average document length was then computed, and an unpaired
t-test performed between all combinations of note categories.
As clinical notes provide detailed information of a patient
encounter, it stands to reason the length of a note is highly
associated with the severity and complexity of a patient’s
condition or treatment. To account for this variability we
perform an additional analysis, removing those notes with an
outlier number of words. As noted prior, clinical text typically
lacks correct or consistent punctuation. As a result, we found
that while a sentence-level evaluation was technically feasible,
the results would yield meaningless values for interpretation,
and as such were not included in this work.

Outliers were identified using the median absolute devi-
ation (MAD). MAD is a highly robust metric of variability,
similar to standard deviation. However, unlike standard devia-
tion, MAD is based on the median value. This distinction acts
to reduce the effect of extreme outliers, which is particularly
important in heavy tailed distributions where the highest values
may be orders of magnitude larger than the median. The
utilization of robust methods, such as MAD, over the normal
standard deviation has been explored in detail by Iglewicz et.
al [41]. For all analyses in this work, outliers are selected at
a threshold of ±3 MAD.

Noting significant differences in their document lengths, we
then moved to investigate the vocabulary for each of the note
categories. To accomplish this task we first identified the total
word count and set of unique words for each category. Next,
we computed the symmetric difference between the set of
unique words for each category pair. The symmetric difference
provides the number of terms which appear in one category
or the other, but not in both. This value was then normalized
with respect to the total size of both vocabularies, providing a
metric for the proportion of overlap in terms utilized between
two categories. With this metric, a value of 1 would represent
two completely distinct vocabularies, where a value of 0 would
indicate the two vocabularies were identical.

Although this work intends to highlight fundamental dif-
ferences among the note categories themselves, it is also
important to examine the distribution of these categories within
a patient’s set of clinical text. An awareness of a potential
category imbalance would be critical for future work, which
may utilize differing processing or weighting methods between
each of the categories. To address this question we calculated
the proportion of each note category for each patient, averaging
across all patients. However it is important to recognize that
not all patients may have clinical text from each category,
particularly within the procedural report class. As such we also



calculate the average count of each category ignoring patients
who have no documented notes in a particular category. This
framework shifts the result interpretation slightly. As an ex-
ample for radiology reports, the initial analysis would present
the average proportion of radiology reports per patient, where
as the second would express the average category proportion
for those patients who have had at least one exam.

B. Linguistic Features

As our prior analyses were able to quantitatively demon-
strate notable differences between the vocabulary of each
category, we then moved to investigate the possibility of
linguistic differences between the categories. We first ana-
lyzed the distribution of the parts of speech used for each
word across the different note categories. Part of speech tags
have been previously established as an important aspect of
many NLP applications‘including “syntactic parsing, named
entity detection, and other information extraction tasks" [42].
Identifying deviations between the part of speech distributions
between different note categories would further support the
notion that additional consideration must be given to the source
of clinical data in order to provide accurate contextual analysis.
The part of speech tags were determined using the NLTK
tagger, which provides labels from the widely employed Penn
Treebank tagset. The comparison between note categories was
performed using the Chi-Squared goodness of fit test, with all
low frequency tags (under an expected value of 5) pooled into
an other category.

Next to provide more formalism to the vocabulary anal-
ysis found in the Note Structure section, we compared the
vocabularies of the clinical (Nursing and Physician) and pro-
cedural (Radiology and ECG) note classes using the cosine
similarity, a widely utilized NLP document similarity metric.
To calculate the similarity the note text was put through a term
frequency–inverse document frequency (tf-idf) transformation,
which provides a document vector where each term in the note
text is inversely weighted to its observed global frequency
within the category. From here the cosine similarity was
computed between each categories’ document matrix. Addi-
tionally we took the evaluation one step further, breaking the
comparison down from a class level to evaluate the similarity
between each of the four individual note categories.

We then explored one of the most prominent NLP metrics
for quantifying the complexity of a vocabulary: its perplexity.
In the context of NLP, perplexity provides a metric for the
probability of predicting a term that occurs in a corpus. By this
definition simpler corpus lend themselves to lower perplexities,
as the probability of correctly predicting a future term is higher
due to the limited vocabulary size. Perplexity is an important
metric with respect to multi-sourced text, as it provides a
measure of a models ability to represent the vocabulary. Thus
to accurately represent two sources with highly different per-
plexities may require substantially different models, providing
the ability to capture the complexities of each without the risk
of over- or under-fitting the respective vocabularies. It should
be noted perplexity can be measured with respect to a n-gram
language model where the probability of correctly predicting
the next term is based on the n-1 terms before it. The average
perplexity for each class was computed independently using
10-fold cross validation, utilizing Good Turing smoothing.

Good Turing smoothing was chosen as to avoid the bias of
determining a smoothing factor required by other techniques
such as Laplace (Additive) smoothing. Further, as the content
of a clinical note is highly complex it may be insufficient to
evaluate the complexity of the vocabularies based on a unigram
model. To account of this, the analysis was extended to the
bigram models of each category. Again, statistical significance
between each category’s perplexity was determined using an
unpaired t-test.

Finally, it is well established that real-world natural lan-
guage vocabularies are inherently noisy, containing many
low frequency words and phrases. In an effort to reduce
this noise, many NLP applications utilize a subset of the
highest frequency terms across the vocabulary’s they model.
To evaluate the effect of this preprocessing technique on
differences previously established by this work, we calculated
the similarity across subsets of the Top-N terms for each
category. While previously the vocabulary similarity was quan-
tified by cosine similarly, in this analysis the similarities were
computed utilizing the Jaccard coefficient. This interchange
was strategic, as the goal of this analysis was to highlight the
effects of the Top-N preprocessing technique on eliminating
low frequency terms between each category, as opposed to the
distribution of terms between each category as was required
in the prior analysis. While the cosine similarity accounts
for the global term frequency within all notes of a specific
category, the Jaccard coefficient calculates only the overlap
between the term sets. The Jaccard coefficient can be defined
as J(A,B) = |A∩B|

|A∪B| [43], where sets A and B represent the
unique set of terms found in the Top-N terms in each category
subset, and the value of N was varied between the top 5 to
1,000,000 terms.

C. Topic Modeling

Although it is straightforward to determine topics of a
single note category, it is particularly difficult to quantify
differences between topics discovered from multiple categories
through a direct comparison. Thus to determine a metric for
the differences in the underlying topics discovered from each
note category we transformed the problem into a classification
task. To transform these topic models into a classification
task the training notes were first aggregated into four sepa-
rate documents, one containing the text of all notes in each
category. Testing documents were left as individual notes to
prevent biasing the result by providing the model additional
terms during prediction. Next we trained a topic model over
the four documents. Using this model we then computed
the similarity of each test note to each of the four training
documents. Then, acting as a classification task, the category
of each testing note was assigned to one of the four training
documents based on the highest degree of similarity. The
resulting accuracy scores then act as a proxy for the the degree
of separability between the topics of each category. Highly
overlapping topic spaces would produce similar cosine simi-
larity score between the training documents (note categories),
increasingly the likelihood of a misclassification, where as
highly distinct underlying topics would have significantly more
polarized similarity scores within the topic-space, and thus
produce improved classification results. .

To generate the topics we utilize a model known as
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Fig. 1: Part of Speech Distribution by Category

Note Type Mean Word Count Word Count SD Total Notes
Nursing 94.98 (93.55) 76.20 (74.94) 1,046,001 (1,019,606)

Physician 480.92 (467.24) 182.04 (158.18) 141,624 (138,280)
Radiology 150.27 (107.68) 120.22 (55.01) 870,504 (733,664)

ECG 18.60 (18.58) 9.29 (9.27) 209,010 (205,331)

TABLE I: Average Document Length

Latent Semantic Indexing (LSI) provided by the python topic
modeling package GenSim [44]. The LSI model was chosen
as it not only allows us to extract the underlying topics, but
also to directly compute a cosine similarity of a new document
with the indexed training documents. As such, we utilized the
the argmax of the similarities to assign the note a category
label. The analysis was performed using stratified 10-fold cross
validation, where the LSI-training documents were regenerated
at each fold, and as is standard within most document retrieval
applications performance is measured using the precision and
recall.

V. RESULTS

The results of each analysis detailed in section IV can be
found in the respective sections below.

A. Note Structure

The results of the document length evaluation can be found
in Table I. The average word count and standard deviation
are reported for both the complete set of notes and for notes
excluding those with an outlier number of words (denoted by
the italicized term within parentheses). Differences in docu-
ment length were found to be statistically significant between
all pairs of note categories at 95% confidence. It should be
noted that category comparisons were not performed between
averages containing outliers and those with them removed.

Next, Table II provides the results for the vocabulary
analysis. Within this table the first four columns present the
normalized symmetric differences between the unique terms
found in each category. As noted prior, the symmetric dif-
ference is the set of terms existing in either category, but not
both, and is normalized by the total unique word count of both
categories. The final two columns represent the count of total
words, and unique words present in each category respectively.

Finally, the average category distribution between patients’
clinical text can be found in Table III. Each of the note

Normalized Symmetric Difference (%)

Nursing Phys-
ician

Radio-
logy ECG Total

Words

Total
Unique
Words

Nursing 0 81.84 86.50 98.65 99,353,821 696,934
Physician 81.84 0 71.80 94.56 68,110,313 143,237
Radiology 86.50 71.80 0 94.89 130,813,301 161,724

ECG 98.65 94.56 94.89 0 3,888,290 8,373

TABLE II: Vocabulary Differences by Category

categories is partitioned into two rows, representing each of
the analyses. The upper row provides the average note count
statistics across all patients, while the bottom line provides the
statistics for only those patients who have at least one note for
the respective category.

Note Type Mean Category % SD Total Notes

Nursing 41.70 33.25 58,006
55.13 26.85 43,872

Physician 04.11 10.70 58,006
26.55 11.99 8,983

Radiology 37.08 31.32 58,006
47.25 27.74 45,526

ECG 17.10 22.86 58,006
22.45 23.78 44,185

TABLE III: Average Category Proportion

B. Linguistic Features

We began the linguistic analysis with an investigation into
the differences between each categories’ parts of speech distri-
bution. Figure 1 represents the normalized tag proportion for
each category. The tags were drawn from the Penn Treebank
Tag Set, and are presented in alphabetical order.

To extend the analysis of vocabulary similarity we calcu-
lated the cosine similarity between the two major classes of
note text, clinical and procedural, finding a similarity of 0.283.
With such a substantial distance between the tf-idf document
vectors, we repeated the analysis breaking the vectors down
into the individual categories. The similarity values between
all-pairs of note categories can be found in Table IV. Finally
we broke the analysis down further, calculating the similarity
between individual notes, stratified to preserve the category
proportions. A visualization of the similarity matrix can be
seen in Figure 2, where higher similarity values are represented
by brighter colors. Sections A, B, C, and D represent notes
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Fig. 2: Individual Note Cosine Similarity. Section A: Nursing Notes, B: Radiology Reports, C: Physician Notes, D: ECG Reports

from the categories of Nursing, Radiology, Physician, and ECG
respectively.

Note Type Nursing Physician Radiology ECG
Nursing 1 0.4697 0.2070 0.0500

Physician 0.4697 1 0.2723 0.0877
Radiology 0.2070 0.2723 1 0.1160

ECG 0.0500 0.0877 0.1160 1

TABLE IV: Category Vocabulary Cosine Similarity

Next the average perplexity for each note category can be
found in Table V. Each category is partitioned into two rows,
where the upper row provides the average unigram perplexity,
while the lower line provides average bigram perplexity.

Note Type Mean Perplexity Perplexity SD

Nursing 1,411.40 105.09
107.33 10.54

Physician 1,324.72 33.78
29.23 1.25

Radiology 762.31 5.85
35.68 0.03

ECG 164.26 3.36
8.60 0.16

TABLE V: Average Category Perplexity

The final linguistic analysis was focused on the noise
reduction technique of utilizing the only the Top-N words in
each category. To quantify how this technique would coalesce
the note categories vocabularies we calculated the Jaccard
Similarity between the set of Top-N terms, varying N from
5 to 1,000,000. Figure 3 presents the results of this analysis
on log-scale in order to smooth the visualization.

C. Topic Modeling

Table VI presents the average precision, recall and F1 -
Score for the topic prediction analysis. For clarity, a correct

prediction represents the following scenario. A test note,
stripped of it category, is converted into LSI-space using the
trained topic model. The cosine similarity is then computed
against each of the four documents, representing each of the
four possible note categories. The argmax of the calculated
similarity scores correctly aligns with the notes true category.

Additionally, as topic models are often viewed as “black-
boxes”, we aimed to provide insight into the underlying topics
discovered from the note text. Each of the models topics can be
found in Table VII, along with the top 5 terms which contribute
to the direction of the topic in both a positive and negative
aspect, also provided are the terms corresponding weights.

Note Type Average Precision Average Recall Average F1
Nursing 0.9982 0.9724 0.9850

Physician 0.8797 0.9859 0.92701
Radiology 0.9914 0.9999 0.9957

ECG 0.9978 0.9998 0.9988

TABLE VI: Topic Model Category Prediction Performance

Topic Number

1 pt left pm mgdl ct
0.2724 0.1945 0.1907 0.1432 0.1263

2 tracing previous sinus rhythm wave
0.4777 0.3135 0.3027 0.2320 0.2282

3 reason contrast pt tracing ct
0.2716 0.2100 -0.2086 -0.1941 0.1800

4 pt mgdl pm meql icu
-0.3440 0.2859 0.2338 0.2251 0.1558

TABLE VII: Most Influential Terms by Topic

VI. DISCUSSION

In the opening chapter of their foundational book on corpus
linguistics, Biber et al. note that “corpus-based analyses must



go beyond simple counts of linguistic features. That is, it
is essential to include qualitative, function interpretations of
quantitative patterns [45].” It is through this lens that we
approach the discussion of our analyses.

A. Note Structure

Beginning with the average note length we find that the
average word count of a note varies widely, even between
notes of the same category. This variation is likely the result
of a number of factors, including the severity of the patient’s
condition, the type of encounter being documented (routine
rounds vs. admission to an ICU), and the time since the
last documentation. Although all categories were statically
different in their average word length, we can dive deeper,
focusing on the notes within the longest (physician) and
shortest (ECG) categories.

Starting with the shortest category, the brevity of ECG
reports is somewhat striking. A review of ECG notes highlights
multiple instances of phrases such as “ECG interpreted by
ordering physician,” suggesting an extended interpretation of
the ECG itself would be found in physician note category.
While this may account in part for the brevity of the category,
we then looked to the second procedural note category for
comparison. The workflow of ECG and radiology reports are
similar in that they are both written by the reading cardiologist
and radiologist respectively, and given to the ordering physi-
cian for interpretation. However we find the average document
length of radiology reports to be much longer, indicating that
the brevity of the ECG may be related to other intrinsic
factors. Closer examination of the ECG note text itself reveals
text highlighting an extremely specific set of physiological
attributes, such as atrial flutter and sinus rhythms. This limited
vocabulary is a category feature we will revisit a number of
times throughout this discussion.

On the other side, the extended length of physician notes
proves to be an interesting characteristic. As noted prior
physician notes may contain information beyond direct patient
observations, such as the interpretation of procedural reports.
Further, examination of these notes reveals that they often con-
tain sections detailing a patient’s medical histories, assessment
and plan of care, which may account for the increase in word
count. Additionally, as will see in the distributional analysis,
the presence of a physicians note may itself be indicative of a
subgroup of patients.

Moving to the vocabulary analysis we observe that despite
the substantial number of words that comprise the vocabulary
of each category, the words used within each are remarkably
different. The normalized symmetric differences, found in
Table II, reveal less than a 30% overlap between even the
most similar categories. Looking next to the similarity score
between each category pair, we can highlight patterns that may
provide insight into the causes of these deviations. Beginning
with nursing notes, it is unsurprising that the category with the
highest similarity is that of physician notes, as both categories
detail patient observations and likely contain similar clinical
vocabulary. However this pattern is not reciprocal, as physician
notes are in fact most similar to radiology reports. This result
may be an artifact of the clinical workflow that generates these
reports. As noted prior, procedural reports are generated by

a specialist, and provided back to the ordering physician for
interpretation. It then stands to reason that physician notes
would utilize a high proportion of words from the radiology
report in their own notes. Following this logic, we look to the
second procedural note category of ECG reports, written by
the reading cardiologist, and we find that ECG reports are in
fact most similar in vocabulary to physicians notes.

As with the two clinical text categories, we find a high
similarity between the ECG and radiology procedural reports.
This is to be expected as these reports detail procedures, and
likely have much a similar set of base terminology. Despite
these similarities, ECG reports are in fact highly different
from all other categories, with differences all above 94%. One
particularly interesting observation is that of the 5.7 million
words found between the ECG reports, we find only around
8,700 unique words, again demonstrating the highly specific
language utilized in the notes of this category.
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Fig. 3: Top-N term Similarity between Categories

Our final structural analysis investigated the average note
category distribution for a patient. Although not focused on
the clinical text directly, the distribution analysis is especially
important for the consideration of future work. Building on the
idea that due to the fundamental differences highlighted in this
work, differing note categories will require specific processing
techniques, we must then also be aware of the imbalance
between the categories themselves. Just as imbalanced classes
must be handled appropriately in the context of classification
tasks, the imbalance within the note categories would then
need to be addressed during any NLP preprocessing and model
training tasks.

These results highlight an interesting phenomenon, al-
though the average proportion of nursing, radiology and ECG
notes demonstrate only a marginal increase compared to the
averages for patients containing at least one note in their re-
spective category, physician’s notes show a drastic increase of
approximately 6.5x. The magnitude of this disparity suggests
that patients who have at least one physician encounter, may
in fact require multiple physician evaluations over the course
of their admission. An awareness of variations such as these
will be particularly important in the development of successful
NLP models, as it demonstrates that class imbalance may not
be a global attribute. As a result, techniques which address



this imbalance may require adjustment on a patient by patient
basis. This scenario fosters the idea that a single model may be
insufficient, but rather an ensemble of models may be required
for appropriate processing.

B. Linguistic Features

We began out investigation into the linguistic features of
differing note categories by evaluating the parts of speech used
within each category. Within both categories of the clinical text
class we find the most prominent part of speech tag represents
proper noun, singular (NNP), followed by noun singular or
mass (NN). However, within the categories of the procedural
report class this pattern is reversed, with the common noun
NN as the leading tag, followed by the proper noun NNP.
This distinction is particularly important for applications such
as named entity recognition and disambiguation, which have
shown great promise in recent applications to clinical text
information extraction. However, prior work has established
the importance of processing proper and common nouns to
achieve optimal performance of such methods, particularly for
situations where proper nouns may contain direct names but
common nouns employ phrases such as “the patient” to refer
to the same entity [46].

Further we note two tags that are notably over-represented
in the procedural report class. These include the adjective
tag (JJ), which comprises 19.25% and 14.03% of tags in
the ECG and radiology categories, when compared to the
6.80% and 6.12% in the nursing and physician categories
respectively. Additionally the tag VBN (verb past participle)
averages 4.11% of tags between the procedural report cate-
gories, compared to an average of 2.34% between the two
clinical text categories. While these differences may seen
trivial the increase in adjectives is an important feature in a
clinical context. For example the presence of a tumor, can be
quantified by the adjectives of benign or malignant, indicating
two very different conditions.

Expanding on the vocabulary differences, we then quanti-
fied the document similarity between the clinical and procedu-
ral classes. As would be expected, text coming from a clinical
class is highly different from that found in the categories
comprising the procedural reports. However, breaking down
the classes into the four categories reveals that even within
a class the note categories are substantially different, with
similarities of 0.4697 and 0.1160 between Nursing/Physician
notes and ECG/Radiology reports respectively. One particu-
larly interesting aspect of the analysis was the granularity
at which these differences are notable. As established by
the prior analyses the overall vocabulary of the categories
is remarkably different on a macro level. However, we have
not yet investigated the categories on a note-by-note basis.
Examining the similarity matrix found in Figure 2 we find a
clear distinction between the documents of different classes,
demonstrating that even with only a few hundred words the
categories are clearly distinguishable. It should be noted that
a visible band exists between sections A and C, representing
similarity between nurse and physician notes. This elevated
similarity is expected, as multiple notes may be detailing the
same patient condition from both the nurse and physician
perspective. However overall these inter-category similarities

represent lower similarity scores than the intra-category com-
parison, as denoted by the darker shades of blue.

Next, the perplexity analysis allows us to further quantify
each category’s language complexity. At a high level we note
a decrease in perplexity from unigram to bigram models. This
is a property of perplexity, as the probability of correctly
predicting a word is helped substantially by knowledge of
the prior word, particularly in complex vocabularies, such
as those detailing patient conditions and hospital procedure
reports. One interesting observation is the change in perplexity
between the unigram and bigram models of the physician
notes and radiology reports. In a unigram model physician
notes present a significantly higher perplexity than radiology
reports. The increased difficulty in predicting a single word is
supported by physician notes increased proportion of unique-
words to total-words detailed in Table II in comparison to the
radiology reports. However when moving to a bigram language
model this pattern is reversed, with radiology reports exhibiting
higher perplexity than physician notes.

This distinction is particularly important for NLP models
that extend beyond bigrams to the concept of n-grams in order
to increase vocabulary information during training. Differing
perplexity patterns such as these may indicate the need to
utilize NLP models which vary the n-gram level based on the
category of clinical text being processed in order to achieve
optimal performance.

Finally an evaluation of the Top-N word similarity between
the categories allows us to extend the vocabulary analysis to
examine how the established differences vary after undergoing
a standard noise reduction technique. Looking at the results
in Figure 3 it is clear that although the subset of vocabularies
can help coalesce text from different categories, they do remain
overall remarkably different, with no value of N exceeding a
similarity of 50%. Beginning with the highest frequency word-
sets (lowest n-values) in each category we find the sets to
be extremely disparate, with similarities below 23% for set
including up to the top 250 words per category. Increasing the
size of the word-sets further does shows a marked increase in
category similarities. This is likely as result of these expanded
containing universal medical terminology that is common to
all categories. Finally continuing to increase the size of the
word-sets to approach the full vocabulary size we note a
decrease in similarity. The sharp decrease is likely caused
by the inclusion of low frequency words, and of terminology
specific to the respective category. We find this result to be
particularly noteworthy as it demonstrates even with the noise
reduction techniques of stop word removal and word frequency
filtering the language used in each category is still extremely
different, supporting the notation that additional processing
techniques are required for proper language modeling of the
heterogeneous sets of clinical text categories.

C. Topic Modeling

In our final analysis we examine the underlying topics
found within each note category. As the comparison of topic
models remains an open area of research, we created an exper-
imental design in which the predictability of notes projected
into LSI space could be utilized as a proxy for the degree of
separability between the topics of each category. The results



demonstrate extremely high precision and recall, indicating the
discovered topics were remarkably distinct. It should be noted
that the lowest predictability is found within the physician
category. Manual inspection of the confusion matrices gener-
ated at each fold reveals, that as would be expected, the most
common incorrect class assignment for a physician notes is
that of a nursing note. This misprediction is logical as both
note categories detail aspects of the patients condition, and
their terminology similarity has been demonstrated in both
vocabulary analyses.

Next we expand the topic model analysis moving to exam-
ine the specific terms which influence the category for each
discovered topic, noting some clear patterns. Looking to Ta-
ble VII the terms within topic 2 appear to denote terminology
commonly found in the ECG category, highlighting words such
as ‘sinus, rhythm, and wave’. For clarity, the following is an
example of an actual ECG note: “Sinus rhythm. Right bundle-
branch block. Left anterior fascicular block. Compared to the
previous tracing of sinus rhythm has appeared. TRACING #2”

Further we note some interesting differences in terminology
between topic what may have a relation to the vocabularies of
different note categories. Topic 1 is most influenced (positively,
weight 0.272) by the appearance of the term pt, whereas
topic 4 is most influenced (negatively, weight -0.344) by the
appearance of the same term. For clarity a negative influence
decreases the likelihood that a note will be assigned to a
particular topic, and in the classification framework provides
a lower cosine similarity which decreases the probability the
note will be assigned to the respective category.

Reviewing the most frequent terms from each class we
find the term pt is the most common term in the nursing
category, while in the physician category it represents the 11th

most common term. A closer examination reveals the 6th most
common term within the physician category to be the full word
patient. Moving further, we find the proportion of occurrence
for the terms pt and patient are roughly equal within physician
notes, constituting around 0.5% of all terms in the category.
However the interchangeability of these terms does not extend
to the nursing category. Within the text of nursing notes the
term pt constitutes just over 2% of all terms, whereas the full
term patient comprises a minimal 0.3%.

The ability to capture nuanced language and notation
differences such as these are critical for effective processing of
clinical text. While it may be possible to coalesce shorthand
such as pt to the full term patient through the use of manually
curated lists, this would require additional preprocessing not
performed by the majority of existing work. Further, it would
be naive to believe that a complete list of transformations could
be maintained for text from multiple categories.

VII. CONCLUSION

Reflecting back, this work provides a comprehensive eval-
uation of the structural, linguistic, and topical features of four
prominent clinical text categories. The analyses provided by
our work have demonstrated fundamental differences in each
of the evaluation areas, across all note categories. A deep
understanding of clinical text is particularly important in the
context of personalized care, as prior work has demonstrated
that no coding system is currently sufficient to allow clinicians

to describe even a single diagnosis completely and accurately
[47], [48]. As a result an awareness of the differences in types
of clinical text will become increasingly important as natural
language becomes increasingly intertwined with the field of
healthcare informatics.

Unfortunately acknowledgement of these differences is not
yet enough, a significant effort remains to truly understand how
clinical text and NLP can best be utilized in conjunction with
informatics methodologies to provide contextually relevant and
accurate analysis of patient conditions. However, it is our hope
that this work inspires others to think about the data utilized
in their analyses, and provides a foundation for which future
work can build to continue the advancement of patient care.
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