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Abstract Coupled with the rise of data science and machine learning, the
increasing availability of digitized health and wellness data has provided an
exciting opportunity for complex analyses of problems throughout the health-
care domain. Whereas many early works focused on a particular aspect of
patient care, often drawing on data from a specific clinical or administrative
source, it has become clear such a single-source approach is insufficient to
capture the complexity of the human condition. Instead, adequately modeling
health and wellness problems requires the ability to draw upon data spanning
multiple facets of an individuals biology, their care, and the social aspects
of their life. Although such an awareness has greatly expanded the breadth
of health and wellness data collected, the diverse array of data sources and
intended uses often leave researchers and practitioners with a scattered and
fragmented view of any particular patient. As a result, there exists a clear need
to catalogue and organize the range of healthcare data available for analysis.
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This work represents an effort at developing such an organization, presenting
a patient-centric framework deemed the Healthcare Data Spectrum (HDS).
Comprised of six layers, the HDS begins with the innermost micro-level omics
and macro-level demographic data that directly characterize a patient, and
extends at its outermost to aggregate population-level data derived from at-
tributes of care for each individual patient. For each level of the HDS, this
manuscript will examine the specific types of constituent data, provide exam-
ples of how the data aid in a broad set of research problems, and identify the
primary terminology and standards used to describe the data.

Keywords Healthcare Analytics · Big Data · Review · Standards

1 Introduction

Upon first consideration, it may be natural for one to view the United States
(US) healthcare system as a single, monolithic entity apportioning care across
the country. In reality, care is provided by an intricate system of interconnected
people, institutions, and resources working in concert to meet the health needs
of the American people. While providing care remains the central function of
this system, evolving economic, legislative, and social conditions have fostered
the rise of numerous ancillary services. Ranging from finance to government re-
porting to evidence-based research programs, these services address the grow-
ing realization that healthcare is a cross-disciplinary endeavor requiring the
integration of data from many fields.

As the breadth of available services continues to grow, healthcare is experi-
encing a dramatic shift in the amount and type of data needed to sustain their
effective functioning. While most notably associated with the adoption and in-
tegration of electronic medical records (EMR) into clinical practice, this shift
has occurred at a much broader scale. Together, industrial, academic, and gov-
ernment partners have worked to collectively transition the body of healthcare
operations from paper-based documentation to electronic health and wellness
data. This transition has elevated healthcare into a new, transformative era of
“big data.” Fostering an explosion in the collection of health-related data pre-
dicted to grow by over 50 fold between 2012 and 2020 to a staggering 25,000
petabytes [40].

With the promise of facilitating new and increasingly complex analyses,
the increasing scale, scope, and variety of digitized health data available holds
great promise for the advancement of personalized healthcare. Yet as access
to new tools and data sources become available, the variety of new data they
generate will introduce challenges for managing the growing diversity of infor-
mation. Without an organizational framework such diverse data will become
fragmented, making it increasingly difficult for researchers and practitioners
to remain informed of the currently available health and wellness data and of
the myriad purposes for which it may be collected and applied.

The work presented in this manuscript attempts to address exactly this
task, organizing the diverse set of a healthcare data from an interpretable,



The State of Data In Healthcare 3

patient-centric view. While prior work has focused on the computational chal-
lenges presented by health data [70, 90, 99], little effort has been devoted to
examining the challenges that arise from the fragmented provenance of the
data itself. Our work seeks to integrate the diverse sources of healthcare data
so that the ever-expanding silos can be catalogued, organized, and synthesized
in ways practically useful for those who seek to consume it. For this purpose,
we present an organizational framework that characterizes data as a hierarchy
extending outward from the patient. We identify how different components of
care fit into this framework, and argue that the framework can be a powerful
tool for addressing practical clinical questions and problems.

Organizational models have already proven a significant resource to re-
searchers and practitioners alike. Among of the most prominent examples of
such can be found in the establishment of the social ecological model, which
formulated how “social environmental and biological factors jointly influence
health” of an individual [102]. However, the establishment of a framework is
only one step. Rather, it is the continued development of these frameworks
that drives the continued growth and success of informatics applications to
problems in the healthcare domain.

The work presented in this manuscript aims to lay the groundwork for a
new perspective on the interconnected nature of health data as it pertains to
an individual, and is organized as follows. In Section 2, we define a patient-
centric data model deemed the Healthcare Data Spectrum (HDS). Subsequent
sections explore the each level of the HDS in detail. Beginning with the inner-
most level of data, Section 3 presents patient omics. Section 4 investigates
patient demographics. Section 5 probes patient care. Section 6 considers pa-
tient wellness. Section 7 examines administrative attributes of care. Section 8
explores aggregate patient data. Within each section we examine the specific
data elements that comprise the HDS level, offer a brief overview of how such
data is being utilized in a broad set of research problems, and review the pri-
mary terminology and standards used to describe the data. Also highlighted
are some relevant computational challenges associated with consuming and
processing such data. Finally, in sections 9 and 10, we provide a discussion
of the most salient open problems in the organization and interoperability of
healthcare data associated with the establishment of the HDS, and conclude
with a summation of our work and contributions.

2 Healthcare Data Spectrum

The HDS is an organizational framework designed to provide a comprehensive
catalogue of the health and wellness data generated through all aspects of
a patient’s care. The framework begins with micro-level omics and macro-
level demographic data directly characterizing a patient. The next level of the
framework extends to the clinical attributes of care. Next are the attributes
that comprise and quantify wellness. Beyond this, are administrative attributes
of care. Finally, the outermost layer details aggregate population-level data
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derived from attributes of care across numerous patients. Through these layers,
the HDS encapsulates and organizes all of the relevant data—both direct and
indirect—that relate to patient health and wellness, from direct attributes of
the patient all the way to the attributes of individuals and services from whom
care is received. A visual representation of the HDS can be found in Figure 1.

Frameworks for organizing healthcare data are imperative for overcom-
ing the negative impacts of data fragmentation and facilitating the continued
growth and success of informatics applications to problems in the healthcare
domain. Our formulation of the HDS distills the largely fragmented set of pa-
tient data available today into the essential components of health and wellness,
providing an organizational foundation detailing the types of data available for
analysis. Additionally the HDS provides a detailed reference to the standards
associated with each data type. Helping guide researchers to an accepted set
of standards may promote consistency between future works, the framework
benefits not only researchers but the field as a whole.

Fig. 1 Healthcare Data Spectrum
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3 Omics Attributes

The inner-most level of a patient’s HDS is represented by his or her omics
data. Broadly defined, omics represents the study of information contained
within an individual’s genome and the biological derivatives of these genes [49,
62]. Omics thus includes fields concerned with the study of genes (genomics),
gene expression and RNA (transcriptomics), proteins (proteomics), and more
recently metabolites (metabolomics) and lipids (lipidomics) [32,107,125]. The
field of genomics is often broken down into additional subfields, which include
genetic elements such as genes, single-nucleotide polymorphism (SNP), and
short tandem repeat (STR) [123]. Although not a distinct omics discipline
itself, the field of genome-wide association studies (GWAS) has been widely
applied to omics data as a popular approach for assessing the association
of SNPs with various phenotypic traits, as well as for assessing the genetic
etiology of diseases [63]. Finally, while we have focused primarily on fields that
study groupings of molecules, a large body of work aims to define fields through
their actions. Prior work by Greenbaum et al. discusses the identification and
prevalence for a number of these emerging omics fields [51].

3.1 Research Applications

Often attributed to the shift from reactive to preventative care, the increasing
availability of health data over the last decade has given rise to an even greater
level of personalization in the emergence of a paradigm of care known as
precision medicine [121]. Today, as massive parallel next-generation and high-
throughput sequencing techniques become increasingly available, healthcare
research finds itself awash of new information that many believe is posed to
profoundly change the clinical landscape [25]

With the cost of sequencing falling from well over $10 million per genome
to within sight of the long-awaited $1,000 mark, several studies have already
demonstrated the use of omics data to address a number of clinical prob-
lems [118]1. The most prevalent applications have focused on the identification
of individuals’ diseases and disease risks, with over 2,000 genetic tests avail-
able to aid in the diagnosis and therapy for over 1,000 different diseases [7].
However, omics research extends much further. More recent work in pharma-
cogenomics has explored how omics data can be utilized to identify the treat-
ment efficacy of various medications and medication dosages for a particular
individual. While, in a field known as nutrigenomics, additional emerging work
has investigated genome-wide influences on nutrition and the role of genetic
polymorphisms in dietary-influenced disease [38,89,122].

Yet, despite these early successes, significant computational and biological
challenges exist for researchers taking the final step from data to insights.
As a consequence of sequencing advances, a considerable amount of research
remains to understand the logistics of how to efficiently process and analyze

1 https://www.genome.gov/sequencingcosts/
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this flood of information [6,131]. Further, it is becoming increasingly clear that
even at such a highly granular view of biological functioning, these systems
do not exist in isolation. There exists a need to develop novel multi-omics
techniques to capture and model the interrelated nature of these elements in
an effort to develop a more complete picture of an individual [25]

3.2 Data Standards

In order to effectively use the wealth of information drawn from omics stud-
ies, significant effort has been put forth to develop standards for identifying
the many variants of each molecule. A number of standards have also been
developed to detail the minimal amount of information required to describe
and reproduce experiments within the omics fields.

One of the most prolific standards for genomic data is the naming conven-
tions maintained by the Gene Ontology Consortium. Additionally, organiza-
tions such as HUGO Gene Nomenclature Committee (HGNC) and the Human
Genome Variation Society (HGVS) provide standardized nomenclature to hu-
man genes and their variations [27,50,61]. To account for accurate representa-
tions of genome sequences, the Genomic Standards Consortium has developed
the Minimum Information about a Genome Sequence (MIGS) specification,
which aims to align with data traditionally captured by the major nucleotide
sequence repositories such as Genbank, EMBL, and DDBJ [45]. Other fields
have developed their own standards initiatives, including the Metabolomics
Standards Initiative (MSI) for metabolomics and the Proteomics Standards
Initiative (PSI) for proteomics [44,92].

To provide consistency in the annotation of the respective molecules, both
the PSI and MSI maintain a set of controlled vocabularies (CV). These vocab-
ularies primarily focus on PSI-Mass Spectrometry (MS), MSI-MS, and MSI-
Nuclear Magnetic Resonance (NMR). However they may also include CV such
as PSI-MI, which defines terminology for protein-protein interactions and MSI-
GC for Gas chromatography. In a similar fashion, transcriptomics provides
the MGED Ontology, which sets standards for the annotation of microarray
experiments [23, 127]. To account for reproducibility, the PSI and MSI initia-
tives have developed minimal reporting sets, including the Minimum Informa-
tion about a Proteomics Experiment (MIAPE) and the Core Information for
Metabolomics Reporting (CIMR) respectively. Similarly, the transcriptomics
field has developed the Minimum Information About a Microarray Experiment
(MIAME) [17,120].

Younger fields such as lipidomics do not, as of yet, have dedicated standard
initiatives. In acknowledgment of the need to differentiate the increasing num-
ber of lipid molecules, the Lipid Metabolites and Pathways Strategy (Lipid
MAPS) Classification System has been developed, funded by the National
Institute of General Medical Sciences [39]. For more details on some of the
more prominent reporting standards, including data format, transfer markup
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languages, and common analytic tools, see Section 3 of [26] and Table 1(iii)
of [119].

4 Demographic Attributes

Moving outward a level on the HDS, we find patient demographics. Demo-
graphics can be broadly defined as the epidemiologically objective characteris-
tics of a population, which include age, marital status, income, and education
level [81]. Drawing from this definition, demographic characteristics can be
divided into two distinct categories: intrinsic features and extrinsic features.
Intrinsic features include directly physiological characteristics, such as age,
gender, height, and to some extent weight. They may also include less ob-
vious characteristics, such as allergies to foods or medications. By contrast,
extrinsic features represent non-physiological characteristics derived from an
individual’s environment and lifestyle, which may include his or her address,
martial status, insurance plan, employment type, location, and salary [111].

4.1 Research Applications

Demographic features have been used extensively in the evaluation of clinical
problems. Pol and Thomas define health demography as “the manner in which
demographic attributes influence both the health status and health behavior of
populations,” and argue that demographic techniques and perspectives provide
a means of studying practically every aspect of health and wellness [97].

Broadly, the evaluation of both intrinsic and extrinsic demographic fea-
tures, better known as an individual’s socio-demographic profile, has provided
a significant body of work demonstrating the usefulness of demographic in-
formation in identifying various diagnoses and population-health risk factors.
While detailing the effect of demography on each diagnosis and population
subgroup is beyond the scope of this review, demographic features have been
shown to hold a critical role in projections for public health programs, alloca-
tion of resources, planning for emergency services, and general estimations of
health characteristics of a population [112].

Aside from the established importance in population health, researchers
have investigated the influence of demographic attributes as it pertains to the
health of an individual [96]. Establishing how demographic characteristics—
particularly intrinsic features such as age and gender—can have a profound
impact on an individual’s expression of various clinical attributes. As a result,
these demographic features must be carefully controlled for to ensure proper
analysis. Work by Skelly et al. has gone so far as to argue that a failure to
consider demographic and clinical attributes as potential confounding factors
can result in biased studies and incorrect conclusions [113,114,132]. Subsequent
research has taken this idea one step further, highlighting the importance
of understanding “the (biological) mechanisms through which demographic
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variables work” [29]. Noting how when properly controlled for, demographic
attributes often represent underlying biological effects, such the changes to an
organism during aging.

Finally, earlier reflections by Eileen Crimmin’s on the 30-year state of de-
mography note the shift from aggregate analysis of group-level data to an
individualized approach was only the start. While demographic attributes are
often modeled as static entities, in reality many evolve over time [28]. As such,
there exists a need to capture the dynamic nature of these features, yet to do
so will require a drastic change to the computational models in which these
features are utilized. Today the demographic attributes utilized to adjust or
control for various subgroups are often considered as fixed effects, even during
longitudinal evaluation of other independent variables. There remains an open
and important problem as to how these effects can by dynamically adjusted
for over repeated measurements of an individual. A problem that will become
increasingly important as demographic data is collected more frequently and
at a finder granularity.

4.2 Data Standards

Due to the large and diverse nature of the human population, demographic
features have historically been difficult to standardize. One of the most effec-
tive demographic standards is the Standards for the Classification of Federal
Data on Race and Ethnicity, created by the Office of Management and Budget
(OMB) in 1995 and updated in 1997 [100]. These standards have since been
built upon by the Department of Health and Human Services (HHS) to in-
clude standards for ethnicity, sex, primary language, and disability status [57].
Together, these standards provide a fairly comprehensive set of demographic
features by which to characterize an individual. However, they still fail to
capture many other important characteristics (e.g., marital status).

There are several standards that account for missing health-related charac-
teristics. One commonly used standard is the Logical Observation Identifiers
Names and Codes (LOINC). LOINC provides a corpus of universal codes, cre-
ated to unambiguously identify the set clinical and laboratory observations.
It is maintained by the Regenstrief Institute, a non-profit medical research
organization associated with Indiana University. The LOINC standard applies
to data within many levels of the HDS [79]. Also, while not a demographic
standard itself, the Health Level Seven International (HL7) standard can also
apply to health-related patient characteristics. Currently at version 3, HL7 is
a wide-ranging standard developed to provide “coherent, extensible standards
that permit structured, encoded health care information of the type required
to support patient care, to be exchanged between computer applications while
preserving meaning.” It is one of several American National Standards Insti-
tute (ANSI) accredited Standards Developing Organizations (SDOs), and is
supported by more than 1,600 members from over 50 countries, including over
500 corporate members. As with the LOINC codes, the standards developed by
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HL7 are used to provide standardized elements for a number of health-related
features throughout the levels of the HDS2.

5 Clinical Attributes

The third level of the HDS represents the first in which the data are not charac-
teristic of the patient themselves, but rather generated as a result of care they
receive. It is also the first level that intersects with entities beyond the patient,
including the clinician(s) providing the care and the clinical environment in
which the care is provided. At the patient level, clinical features are generated
as a direct result of the care received through the individual’s interaction with
a clinician. Clinical features are captured from a number of sources, and may
represent structured or unstructured data.

Structured clinical data represents those elements that can be discretely la-
beled or coded. These include the medications prescribed, diagnoses received,
and procedures and lab tests performed. Unstructured data is associated with
information that is not organized in a pre-defined manner, and may be drawn
from sources such as clinical documentation and medical imaging. Clinical doc-
umentation may include progress notes, consolations, procedural reports, and
admission and discharge summaries. Medical imaging includes data recorded
from techniques such as X-ray (projection radiography), X-ray computed to-
mography, nuclear medicine (SPECT/PET), ultrasound, and magnetic reso-
nance imaging (MRI) [117]. Technological advances have further extended the
purview of unstructured data to include digitally recorded audio, and video.

As noted prior, the third level of the HDS provides an intersection point
between multiple entities. While patient data is obviously generated as a re-
sult of patient care, this care is provided by clinicians who themselves exhibit
a number of important attributes. These can be linked back to second-level
demographic attributes (both inartistic and extrinsic), such as age, gender,
salary and practice location. Further, clinician data as well as additional ex-
trinsic attributes, including the medical school and residency programs they
attended, their credentials (M.D., N.P., R.N., etc.), and their clinical specialty.
Finally, the clinical environment in which the care is provided can offer its own
set of attributes. Some of the most prevalent are the number of beds and the
number of staff, though the complex nature of these environments may be
represented by varying degrees of these attributes.

5.1 Research Applications

With electronic medical records emerging as a driving force in the digitaliza-
tion of health care, research surrounding information collected at the clinical
level of the HDS has thrived. While the primary goal of clinical data is to facil-
itate patient care, the persistence and accessibility of such data has facilitated

2 http://www.hl7.org
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its use in analyses across the entirety of the healthcare domain. Spanning from
aiding in redefining clinical guidelines, to cost reduction, to population-level
estimates of the Global Burden of Disease [15, 77], this repurposing of previ-
ously collected data is formally known as “secondary use”, and it has since
become an established element of clinical research [105].

From a more general research perspective, structured and unstructured rep-
resentations of clinical data are being employed in a range of applications to
establish correlations between clinical variables, identify disease comorbidities,
improve patient stratification, highlight novel drug interactions and predict
clinical outcomes [65]. Further, in an effort to continuously improve such anal-
yses, longitudinal methods are being developed to understand the progression
of these elements over time. Additionally, outside of attributes of the patient,
analyses of hospital staffing and organization have been used beyond the stan-
dard evaluation on quality of care to examine aspects of job satisfaction, nurse
burnout, and physician procedure selection [3, 41].

To date, extensive literature has been published around the influence of
data mining and machine learning methodology on clinical data [64]. Yet
despite—or perhaps because of—the progress and success of these models, the
integration of new data sources has proceeded almost unchecked to include
data collected from bedside monitors, laboratory tests, imaging procedures,
and pharmacy prescriptions. Unfortunately, current computational modeling
approaches are no longer sufficient to represent thes data. Rather, signifi-
cant work must be done to adapt these models to encompass the broad set
of heterogeneous, noisy, high-dimensional, and irregularly sampled variables
collected [42].

5.2 Data Standards

The expansive number of attributes at the care-level of the HDS yields a num-
ber of standards. One of the most pervasive standards is International Classi-
fication of Diseases (ICD). Published and maintained by the World Health Or-
ganization, the ICD standard is used to monitor the incidence and prevalence
of diseases and other health problems. The standard has a notable extension,
known as the clinical modification (ICD-CM), which provides standardized
codes for the diagnoses and procedures associated with hospital utilization in
the United States. Unlike the ICD standard the ICD-CM standard is main-
tained by the National Center for Health Statistics (NCHS) and the Centers for
Medicare and Medicaid Services (CMS). As an important distinction, within
the newest revision of the ICD standard (ICD-10), the CM has been reserved
solely for diagnosis coding, and a separate partition (ICD-10-PCS) has been
created to encode procedures. However, prior revisions, such as ICD-9-CM will
continue to maintain codes for both diagnoses and procedures [33,56,84,93].

Additionally, while the ICD standard holds the capacity to classify men-
tal disorders, the American Psychiatric Association (APA) maintains what is
often regarded as the standard for mental health professionals in the United
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States, known as the Diagnostic and Statistical Manual of Mental Disorders
(DSM) [9]. Though the ICD standard provides moderate support for the de-
scription of clinical procedures, additional standards have been created to more
completely represent the breath of possible entities. One of the primary stan-
dards is drawn from the Current Procedural Terminology (CPT), a standard
maintained by the American Medical Association (AMA) that provides unique
codes to detail medical procedures and services under public and private health
insurance programs. It should be noted that unlike most of the publicly avail-
able standards listed thus far, the CPT standard is privately owned and must
be licensed from the AMA for use [8]. Another prominent procedural cod-
ing standard is the Healthcare Common Procedure Coding System (HCPCS),
maintained by the CMS. The HCPCS standard is partitioned into two lev-
els: Level-1 represents analogous codes to the CPT standard, while Level-2
is utilized primarily to identify products, supplies, and services that are not
included in the CPT [84,85].

To standardize the expansive set of pharmaceutical products, the Food and
Drug Administration (FDA) maintains the National Drug Code (NDC). The
NDC is intended to provide a “current list of all drugs manufactured, prepared,
propagated, compounded, or processed for commercial distribution” [47]. Fi-
nally the LOINC codes, which provided standards for a subset of demographic
features, in fact provide the primary standard for laboratory tests. As of July
2002, the LOINC database carried records for more than 30,000 different ob-
servations, of which approximately 25,000 are categorized as laboratory test
observations [79]. Although the majority of the coding standards reviewed thus
far pertain to structured data, there has been a significant effort to provide
standards encompassing unstructured data. In particular, HL7 working groups
have provided standards for the structure and semantics of clinical documen-
tation, known as the Clinical Document Architecture (CDA), and the Amer-
ican College of Radiology (ACR) have provided and maintained the Digital
Imaging and Communications in Medicine (DICOM) for medical images and
related information [34,88]. Beyond the patient level, the CMS has created the
National Provider Identifier (NPI) standard unique to effectively identify the
link between patient care attributes and the clinicians who provide this care
by uniquely identifying health care providers [86]. Moving beyond the clini-
cian level to the clinical environment, to aid in the ever-increasing regulatory
mandates independent, not-for-profit organizations, have taken to providing a
standardized set of metrics for both care-units and hospital operations such
as staffing. One of the most prominent is the Joint Commission, which as of
2011 accredits and certifies over 80% of the hospitals in the U.S. [58].

6 Wellness Attributes

At the fourth level, we find an emerging layer of the HDS, personal wellness
data. While distinctly outside of the direct clinical care attributes, wellness
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data represents attributes that are typically collected outside of formal clinical
environments and are often measured by the individual themselves.

Although recent media attention has emphasized the rise of wearable fit-
ness tracking as a source of personal data, in actuality such data can be gen-
erated and collected through a number of mediums. These can include devices
as simple as wireless scales and digital pill boxes or as complex as personal
medical devices such as digital glucometers, personal blood pressure cuffs, and
pulse oximeters. Further, advances in technology have allowed for increasingly
pervasive monitoring tools including in-home sensors in beds, chairs, and fall
detection within flooring [22].

In the evaluation of wellness data, it is important to highlight that the term
“wellness” is itself ambiguous. In the context of health, the term wellness is
most often associated with physical attributes, but formal research has es-
tablished that it is more appropriate to consider wellness a multi-dimensional
entity. In one of the earliest definitions, Hettler proposed a hexagon model,
which included physical, emotional, social, intellectual, occupational, and spir-
itual wellness [59]. Since then a number of works have revised and extended
the definition of wellness to include social, physical, creative, and emotional
factors [54]. As a result, wellness data extends far beyond physical sensors to
the analysis of an individual’s social activity and dietary habits [80,133].

6.1 Research Applications

Resulting from the relative infancy of formally collected wellness data, re-
search into wellness data “lacks a clear theoretical basis, a set of data models,
and empirically derived strategies for integrating tools and data into existing
clinical applications and workflows” [104]. However, the applications of such
data to understand an individual’s greater health condition has emerged as a
key goal of the research community. In line with this goal, a working group of
the American Medical Informatics Association (AMIA) investigated the pol-
icy, economic, and ethical implications of patient-generated data. Highlighting
“the potential to empower patients and support a transition from a role in
which the patient is the passive recipient of care services to an active role in
which the patient is informed, has choices, and is involved in the decision-
making process” [31].

To this end, researchers have already begun to utilize a broad set of patient
generated health data collected by sensors, direct data entry, and social media
activities to aid in tasks ranging from determining clinical trials efficiency,
evaluating novel therapeutics, and measuring functional recovery in patients
[5, 130]. While, parallel streams of research have focused on the utilization of
mobile devices as a rich source of pervasive health and wellness informationa
practice termed “m-health.” [66,68]. Finally, outside of the applications itself,
recent work has also begun to explore the implications of collecting this data
in real-time, addressing multi-stream integration and discussing how the vast
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quantity of data can be presented in useful formats with new visualization
techniques [108].

Such research brings to light a number of important caveats about well-
ness data. Open questions remain around the source, quality, and utility of
such data for decision-making [109]. As wellness data is continuously inte-
grated into medical contexts, it is vital to acknowledge the shift to data col-
lection outside of traditional clinical settings. No longer collected and curated
by trained medical professionals, moving forward it will become increasingly
important for computational models to account for varying levels of data ve-
racity [95]. Further compounding this difficulty we note, as opposed to largely
standardized clinical tools, serious computational efforts must be made to cap-
ture and control for variability between the measurements captured by various
consumer-grade devices.

6.2 Data Standards

Currently, there is no standard for the storage and collection of patient well-
ness data. Instead, many company that produces products for measuring at-
tributes of patient wellness have developed their own guidelines. To overcome
these fragmented guidelines, the Consumer Electronics Association (CEA) has
released the first set of standards related to wellness data, named the Guiding
Principles on the Privacy and Security of Personal Wellness Data [10].

7 Administrative Attributes

Complex as it is with many interacting entities, the healthcare system gener-
ates a substantial amount of data on the peripheral attributes of care, including
financial, logistical, and administrative data. The fifth level of the HDS moves
beyond the characteristics of direct care to capture this broader set of data.

7.1 Data Sources

The primary source of financial data is public and private insurance claims.
However a variety of additional sources can be used to augment the scope
and level of detail for financial data, including managed care plans, hospital
discharge datasets, and revenue cycle management organizations [103]. Recent
policy changes further promise to broaden the transparency of healthcare costs,
providing new avenues by which to obtain financial data. Of note, the Depart-
ment of Health and Human Services (HHS) announced on April 2nd, 2014
that the CMS would release a public dataset with information on the types of
Medicare services, requested charges, and payments issued by providers across
the country [18].

The complexities of the healthcare system provide opportunities to col-
lect and analyze logistical data pertaining to several aspects of patient care,
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such as the care environment and resource utilization [74, 98]. Details of the
care environment can include the care-team composition and staffing met-
rics, while observations of resource utilization can include an expansive set of
service metrics (e.g., inpatient, outpatient, and emergency department visits),
medication usage, and performed diagnostic tests and procedures [52]. Finally,
further information is provided by assessments of the quality of patient care.
These assessments may include performance analyses of the service providers
(i.e., reviews of clinician performance) and reviews of customer satisfaction
(patient satisfaction surveys) [72,124].

7.2 Research Applications

Researchers have continuously explored how data can be used to improve the
quality and efficiency of care provided. Such information can help researchers
investigate how to enhance the patient experience and improve the efficiency
of the healthcare systems providing care.

Continually rising healthcare costs have become a perennial concern as-
sociated with all levels of care for providers and patients alike. A prevalent
use of administrative data has been to provide insight into the cost of patient
care. Researchers have used financial data drawn from administrative claims
to analyze the costs of care associated with the treatment of specific diag-
noses [19, 73]. A tacit component of this cost is the resulting burden of fraud
on the healthcare system. A large body of research has been dedicated to the
application of patient claims data and statistical methods to detect health care
fraud [76]. Research is this area continues to grow, with the burden of fraud so
great that the European Healthcare Fraud and Corruption Network considers
fighting it to be “the first and most effective step for...setting up cost cutting
strategies in order to stop losses without reducing the access to and the quality
of care [48].”

Researchers have demonstrated that predictive analytics techniques per-
formed on data beyond the patient level can also be used to aid health care
practices. For example, while financial data is collected primarily for the ben-
efit of the hospitals and practices providing care, incorrectly coded and billed
patient charges can be identified and recovered without the need for a manual
review of all service claims, thereby improving the efficiency of these transac-
tions for both the patient and provider [16]. Also, while data on care teams
and unit staffing is collected primarily in an effort to ensure patient safety,
it has been well-established that inadequate staffing is correlated to both an
increased frequency of negative patient outcomes and increased rates of clini-
cian burnout. Researchers have used staffing data not only to develop models
to ensure adequate staffing, but to better understand the dynamics of the care
environment from the provider’s perspective [53]. By targeting individuals, an
intricate understanding of both the specific resources used by population sub-
groups and how those resources are best utilized has the potential to greatly
improve the quality of care [2, 115].
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At an administrative level, patient satisfaction and clinical performance
have always been an integral part of the evolving practice of medicine. Re-
searchers have investigated the objectivity and utility of patient reviews, of-
fering the increasingly accepted view that patients themselves can provide
useful information on the delivery of care [35]. Researchers and hospital ad-
ministrators have also suggested that patient satisfaction data can be applied
to understand the role of medicine in satisfying patients’ physical and mental
needs, as well as to improve the overall quality of care provided [91].

Beyond the patient and clinician quality and satisfaction, care environ-
ments such as hospitals have begun to analyze similar performance metrics.
These metrics have shown impact on quality improvement, market share, and
reputation [60]. Additionally, it should be noted that the data sources at this
level are strongly interconnected. Recent work has begun to investigate the im-
plicit relations between many of these factors including satisfaction, utilization
and outcomes [43].

7.3 Data Standards

The financial data practices established by hospitals and clinics are fundamen-
tally similar to those employed by most businesses. A number of works have
expressed how these standard financial techniques apply to the healthcare do-
main, while detailing the relation of financial regulations to managed care and
to agencies such as Medicare and Medicaid [12,82].

Insurance claims pose another interesting issue. Administrative claims data
represent a critical source of healthcare financial data, but are often managed
by external third parties. To help account for some of the inevitable variation,
the Health Insurance Portability and Accountability Act (HIPAA) was intro-
duced [24]. At the time that the HIPAA legislation was enacted, more than
400 different “standard” claim forms were in use, and beyond the commonly
associated aspect of patient privacy, HIPAA includes a number of provisions
intended to provide standardization [36].

The collection of logistical data is somewhat more difficult, as it is often
derived from care at an individual level. Similarly to omics data, a number
of Minimum Data Set standards have been developed to ensure that data
will be collected in a consistent manner between individuals and across units
and institutions. Commonly, these can include standards such as the Nursing
Minimum Data Set (NMDS), which provides standards for the documentation
of “patient/client responses, interventions, patient-sensitive outcomes, and re-
source consumption [30].”

Data collected by various private and government agencies are typically
structured based on internal guidelines. For larger datasets that may span
many hospitals, these standards help to define a consistent reporting struc-
ture required for effective analysis. This can be seen in datasets such as the
Healthcare Cost and Utilization Project (HCUP), which provides the basis for
analyses on all aspects of inpatient hospital care [37,101].
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Finally, satisfaction and performance data is typically assessed through
survey data. While there have been a mass of localized surveys, recent finan-
cial incentives have pushed for a more uniform metric between institutions.
One emergent patient satisfaction standard has been created in the Hospital
Consumer Assessment of Healthcare Providers and Systems (HCAHPS) sur-
vey [83], while a number of different approaches have been proposed to obtain,
quantify, and standardize physician performance [11].

8 Aggregate Attributes

At the highest level of the HDS we find aggregate data. Although upon first
consideration, aggregate data may seem simply an extension of data encoun-
tered at the lower levels of the HDS, health-related data can be collected,
inferred, and analyzed from a number of indirect sources.

8.1 Data Sources

A Bulletin of the World Health Organization has categorized data needs and
sources into a hierarchy of community, facility, district, province, country,
global levels [1]. These sources include public health data typically curated
by large national and government entities. Among the most prominent are
the United States Census Bureau, Bureau of Labor Statistics, and the Agency
for Healthcare Research and Quality (AHRQ). The census bureau conducts
a number of surveys at varying intervals, intended to provide a comprehen-
sive overview of the U.S. population and government and industry, including
the Decennial Census of Population and Housing, Economic Census, Census
of Governments, American Community Survey (ACS) and Economic Indica-
tors [20].

Traditionally one of the fundamental uses of aggregate-level health data
has been the review and analysis of population health [106]. Although the
definition of “population health” often differs between sources, an overarching
theme of population health is the idea that it “forces review of health out-
comes in a population across determinants [71].” Determinants refer to the
social, environmental and physical connections between structures, ideologies,
policies, contexts, lifecourses or lifecycles, and their impact on health and well-
being [128,129].

While the data at this level primarily centers around population health
and reporting, it can be drawn from many less conventional channels, such
as online social media [69]. In fact, the WHO maintains an extensive set
of such indicators, which are often used for a variety of purposes including
program management, allocation of resources, monitoring country progress,
performance-based disbursement, global reporting, and so on [94]. It is the
ability of aggregate data to draw data from sources across these domains that
positions it as such a powerful source of population health insights. As an ex-
ample, work that investigated how income inequality may be related to health
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outcomes utilized data detailing investments in human capital and social re-
sources. To address this question, data was derived from entities such as the
United States Bureau of the Census, Bureau of Labor Statistics, Centers for
Disease Control (CDC) Department of Agriculture, Education, and a number
of additional aggregate level data sources [67].

Recent shifts in the regulatory landscape of the healthcare industry, includ-
ing the passage of the Patient Protection and Affordable Care Act (ACA), have
advanced the collection and analysis of aggregate-level health data though a
number of initiatives. These include the establishment of the Patient-Centered
Outcomes Research Institute, National Prevention, Health Promotion and
Public Health Council, the promotion and implementation of accountable care
organization (ACOs), and support for a new Prevention and Public Health
Fund and community transformation grants [116].

8.2 Research Applications

As time passes and more extensive datasets become available for analysis, re-
searchers have continued to find new ways in which to utilize aggregate health
data. One of the most prominent examples for the utilization of such data has
been the Institute for Healthcare Improvement (IHI) “Triple Aim” initiative.
The Triple Aim, has been defined as an overarching goal of the U.S. healthcare
system to improve the experience of care, improve the health of populations,
and reduce per capita costs of health care [13]. In their book “Big Data and
Health Analytics”, Marconi and Lehmann state that “Health information is
more readily available, and while walls have fallen to enable more sharing,
there are needs beyond sharing of raw data to fully power a successful Triple
Aim”. They note that “achieving better care, improved outcomes, and in-
creased patient satisfaction requires analytics data to incorporate enterprise
level aggregated information to ensure the best insights” [78].

Aggregated data has found application in a diverse range of research ap-
plications that seek to better understand how health care can and should be
delivered. For instance, researchers have used aggregate data to model health
care costs, using the data to model and estimate future medical and non-
medical expenditures [87]. From a quality perspective, the Patient-Reported
Outcomes Measurement Information System (PROMIS) program aimed to
“create efficient measures that would be feasible to implement in busy office
practices and that could provide a system of population health surveillance
normed to the U.S. general population” [55]. Finally from a population health
perspective, macro-level interventions such as one provided by Kaiser Perma-
nente “uses data about the population it serves, available through its system-
wide electronic health record, to understand members’ health needs and the
distribution of health outcomes. Using these data, Permanente offers a range
of interventions tailored to the needs of different individuals and population
groups to support people to remain healthy and to deliver the right treatments
when they become ill” [4].
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Yet, despite their careful curation, aggregate datasets present a number
of inherent biases that must be accounted for as such data sources become
an increasingly common component of larger computational models. First, in
order to protect individual anonymity data sources of low populous areas, in-
frequent diagnoses, or minimal response rates are often masked or removed
from the final data. However, without correction, removal of this informa-
tion can drastically shift interpretation of analyses that span multiple data
elements. Further, it is important to note aggregate data reports are often
collected across multiple years. As such, the utilization of even the most up
to date information from multiple sources runs the risk of their collection oc-
curring during different timespans, resulting in their capturing of potentially
different latent factors creating an inherent and often undocumented bias in
any analysis.

8.3 Data Standards

Aggregate level data provides an interesting challenge to the informatics com-
munity, as the format and collection standards of the data are governed by the
individual agencies who manage the collection process. As might be expected,
a number of practical issues have been identified with using data from large
population level health databases [14]. As a result there has been a significant
effort to design methods to improve the quality of data extracted from these
databases, making it more suitable for analysis [46]

A number of works have investigated the implications of such fragmented
collection techniques, including quantifying the validity and lifespan of clinical
guidelines established using such data [110].

9 Future Research Directions

Moving forward, it is important to remember that the strength of organization
frameworks lies beyond simply processing vast quantities of information into
a cohesive structure. Their true value comes from the synergy this process
creates as part of a larger body of research. Beyond organizing the diverse and
interconnected collection of health data as it relates to an individual, the HDS
framework can serve as a catalyst for researchers and practitioners to drive
health informatics research forward. Such progress can take many forms, and
in the following sections we highlight a set of open research directions and
their relation to the HDS.

9.1 Analytical Components

Perhaps the most direct application of the HDS can be found in the breadth of
ongoing analytical research. The increasing scale, scope, and variety of avail-
able health care services permits a wealth of new and increasingly complex
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analyses. Although there exists a general understanding that these analyses
will require data from multiple sources, these sources are still typically drawn
from within a single layer of the HDS. To unleash the full potential of health
informatics, we must take a broader vision that employs data sources from
several layers.

This idea of cross-layer analysis has already exhibited early success, par-
ticularly within the fields of personalized and precision medicine. Identifying
relations between clinical health and socio-demographic (clinical and demo-
graphic layers), clinical health and individual wellness (clinical and wellness
attributes), and even clinical outcomes and omics data promise to offered tai-
lored individual care and treatment plans. Utilization of the healthcare data
spectrum offers a chance to push these types of analysis further. By offering
a simple reference for those planning future research endeavors, the HDS al-
lows researchers to identify a broader set of relevant data and to explore yet
untapped relationships.

9.2 Interoperability

Identifying relevant data represents only one challenge of the advancing infor-
matics environment. Once identified, there remain a number of open questions
around to obtain and prepare this data for analysis. Across the many levels of
the HDS, it is clear that there are many sources of disparate data throughout
the healthcare system, siloed away and confined for a narrow, particular use.
Moreover, once acquired, considerable effort must be put forth to ensure con-
sistency of the data elements across each of the sources from which they were
collected.

The ability to connect data across these silos poses one of the primary
obstacles for its broader use in translating research to practice. Current efforts
in interoperability include the development of data standards for exchanging
healthcare information electronically (such as the Fast Healthcare Interoper-
ability Resource, FHIR). As well as the creation of reference infrastructure
such as the Census Bureau Linkage Infrastructure (CBLI) to provide refer-
ences to the methods, links, warehouses, and provisions of data [21, 126].The
goal of these standards has been to provide available and understandable elec-
tronic health data. However much work remains to be done in the organization
of these links. Such a need provides a number of possibilities through which
researchers could utilize the HDS layers to understand which data elements
are available for each source, the individual standards utilized by each, and the
interoperability standards as they pertain to each individual element within
and between layers.

9.3 Evolving Standards

Finally, the evolving nature of healthcare also provides an opportunity to ex-
tend the HDS itself. While the individual layers of the HDS are designed to



20 Feldman et al.

represent a fixed portion of global health and wellness data, we are acutely
aware that the standards through which the data are captured will continue to
evolve over time. The introduction and deprecation of these standards presents
its own set of challenges to the advancement of health analytics and interoper-
ability. Where the lack of a clear connection between data captured at various
time points may further serve to prohibit the use of historical data repositories,
resulting in a significant loss of potentially useful information.

Once established, the HDS represents a promising structure through which
to maintain references for such historical interoperability. As specified in this
work, the HDS is two dimensional, defining a set of data elements and the level
in which they reside. However this structure could be augmented to include a
third and fourth dimension. The third dimension could capture the temporal
evolution of standards for each data element over time. The fourth dimension
could provide information pertaining to how a specific data entity maps to each
standard. While this mapping is usually provided with each standard release,
the centralization of these mappings—often referred to as data-crosswalks—
would provide an incredibility valuable resource as health data continues to
develop as a digital entity.

10 Conclusion

“Enormous amounts of new knowledge are barreling down the information
highway, but they are not arriving at the doorsteps of our patients” [75].
This sentiment expressed by Dr. Claude Lenfant—the longest-serving Direc-
tor of the National Heart, Lung, and Blood Institute—captures the state of
informatics in healthcare today. Whether a result of government mandates,
evidence-based practice guidelines, or perhaps even the generational shift in
technology usage, access to digitized healthcare data continues to rise. Yet the
enormity of the data alone cannot ensure its effective use, nor address the
needs of clinicians and researchers. To achieve such a meaningful impact on
the lives of individuals will require an intricate understanding of the strengths,
limitations, and relations between the data available.

The work presented in this manuscript aims to take the first step in this
direction, presenting a patient-centric organization of the variety of health
data available today in Healthcare Data Spectrum (HDS). The HDS provides
a principal reference of the types of data available for analysis. Aiding both
experienced researchers as well as those who are just entering the health in-
formatics field, in building comprehensive multi-faceted models accounting for
multiple aspects of the an individual’s life and care. Further, it also offers a de-
tailed listing of the organizations and standards that govern each data source,
allowing those who utilize such data to do so in a more consistent manner, in
turn supporting the push for accessible and reproducible research.

It is our hope that in this era of big data, such a framework can serve as a
cornerstone in the organization of our vast supply of knowledge, helping guide
it to its rightful destination in clinics, hospitals, and laboratories. Connecting
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multiple sources of data, driving forward the field as a whole, and promoting
health and wellness one data point, and one patient, at a time.

Acknowledgements This work is supported in part by the National Science Foundation
(NSF) Grant IIS-1447795.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

References

1. AbouZahr, C., Boerma, T.: Health information systems: the foundations of public
health. Bulletin of the World Health Organization 83(8), 578–583 (2005)

2. Adashi, E.Y., Geiger, H.J., Fine, M.D.: Health care reform and primary carethe grow-
ing importance of the community health center. New England Journal of Medicine
362(22), 2047–2050 (2010)

3. Aiken, L.H., Clarke, S.P., Sloane, D.M.: Hospital staffing, organization, and quality of
care: cross-national findings. Nursing outlook 50(5), 187–194 (2002)

4. Alderwick, H., Ham, C., Buck, D.: Population health systems. Going beyond integrated
care, The Kings Fund (2015)

5. Appelboom, G., Yang, A.H., Christophe, B.R., Bruce, E.M., Slomian, J., Bruyère, O.,
Bruce, S.S., Zacharia, B.E., Reginster, J.Y., Connolly, E.S.: The promise of wearable
activity sensors to define patient recovery. Journal of Clinical Neuroscience 21(7),
1089–1093 (2014)

6. Ashley, E.A.: Towards precision medicine. Nature Reviews Genetics 17(9), 507 (2016)
7. Association, A.M.: Genetic testing. URL http://www.ama-assn.org/ama/

pub/physician-resources/medical-science/genetics-molecular-medicine/

related-policy-topics/genetic-testing.page. Accessed May 31, 2016
8. Association, A.M.: Current procedural terminology: CPT. American Medical Associ-

ation (2007)
9. Association, A.P., et al.: Diagnostic and statistical manual of mental disorders (DSM-

5). American Psychiatric Pub (2013)
10. Association, C.E.: Guiding principles on the privacy and security of personal well-

ness data. Online (2015). URL https://fpf.org/wp-content/uploads/2015/10/

CEA-Guiding-Principles-on-the-Privacy-and-Security-of-Personal-Wellness-Data-102215.

pdf. Accessed May 31, 2016
11. Barro, A.R.: Survey and evaluation of approaches to physician performance measure-

ment. Academic Medicine 48(11), 1047–93 (1973)
12. Berger, S.: Fundamentals of health care financial management: A practical guide to

fiscal issues and activities. John Wiley & Sons (2008)
13. Berwick, D.M., Nolan, T.W., Whittington, J.: The triple aim: care, health, and cost.

Health Affairs 27(3), 759–769 (2008)
14. Bibb, S.C.G.: Issues associated with secondary analysis of population health data.

Applied Nursing Research 20(2), 94–99 (2007)
15. Bloomrosen, M., Detmer, D.E.: Informatics, evidence-based care, and research; impli-

cations for national policy: a report of an american medical informatics association
health policy conference. Journal of the American Medical Informatics Association
17(2), 115–123 (2010)

16. Bradley, P., Kaplan, J.: Turning hospital data into dollars: healthcare financial ex-
ecutives can use predictive analytics to enhance their ability to capture charges and
identify underpayments. Healthcare Financial Management 64(2), 64–69 (2010)



22 Feldman et al.

17. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C.,
Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., et al.: Minimum information about a
microarray experiment (miame)toward standards for microarray data. Nature genetics
29(4), 365–371 (2001)

18. Brennan, N., Conway, P.H., Tavenner, M.: The medicare physician-data releasecontext
and rationale. New England Journal of Medicine 371(2), 99–101 (2014)

19. Brown, M.L., Riley, G.F., Potosky, A.L., Etzioni, R.D.: Obtaining long-term disease
specific costs of care: application to medicare enrollees diagnosed with colorectal cancer.
Medical care 37(12), 1249–1259 (1999)

20. Bureau, U.C.: Census product catalog (2012). URL http://www.census.gov/mp/www/

cat/index.html. Accessed May 31, 2016
21. Bureau, U.C.: Census bureau linkage infrastructure (cbli) (2016). URL https://www.

census.gov/about/adrm/data-linkage/what.html. Accessed May 31, 2016
22. Carroll, R., Cnossen, R., Schnell, M., Simons, D.: Continua: An interoperable personal

healthcare ecosystem. Pervasive Computing, IEEE 6(4), 90–94 (2007)
23. Castle, A.L., Fiehn, O., Kaddurah-Daouk, R., Lindon, J.C.: Metabolomics standards

workshop and the development of international standards for reporting metabolomics
experimental results. Briefings in Bioinformatics 7(2), 159–165 (2006)

24. Centers for Medicare & Medicaid Services: The Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA). Online at http://www.cms.hhs.gov/hipaa/ (1996)

25. Chen, R., Snyder, M.: Promise of personalized omics to precision medicine. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine 5(1), 73–82 (2013)

26. Chervitz, S.A., Deutsch, E.W., Field, D., Parkinson, H., Quackenbush, J., Rocca-Serra,
P., Sansone, S.A., Stoeckert, C.J., Taylor, C.F., Taylor, R., et al.: Data standards
for omics data: the basis of data sharing and reuse. Bioinformatics for Omics Data:
Methods and Protocols pp. 31–69 (2011)

27. Consortium, G.O., et al.: The gene ontology (go) database and informatics resource.
Nucleic acids research 32(suppl 1), D258–D261 (2004)

28. Crimmins, E.M.: Demography: The past 30 years, the present, and the future. Demog-
raphy 30(4), 579–591 (1993)

29. Crimmins, E.M., Seeman, T.: Integrating biology into demographic research on health
and aging (with a focus on the macarthur study of successful aging). In: Cells and
Surveys: Should Biological Measures Be Included in Social Science Research? National
Academies Press (US) (2001)

30. Delaney, C., Moorhead, S.: The nursing minimum data set, standarized language, and
health care quality. Journal of nursing care quality 10(1), 16–30 (1995)

31. Demiris, G., Afrin, L.B., Speedie, S., Courtney, K.L., Sondhi, M., Vimarlund, V.,
Lovis, C., Goossen, W., Lynch, C.: Patient-centered applications: use of information
technology to promote disease management and wellness. a white paper by the amia
knowledge in motion working group. Journal of the American Medical Informatics
Association 15(1), 8–13 (2008)

32. Dettmer, K., Hammock, B.D.: Metabolomics—a new exciting field within the “omics”
sciences. Environmental Health Perspectives 112(7), A396 (2004)

33. for Disease Control, C., (CDC), P., et al.: Classification of diseases, functioning, and
disability. international classification of diseases, tenth revision, clinical modification
(ICD-10-CM). CDC web site (2014)

34. Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F.M., Biron, P.V., Shabo,
A.: Hl7 clinical document architecture, release 2. Journal of the American Medical
Informatics Association 13(1), 30–39 (2006)

35. Draper, M., Cohen, P., Buchan, H.: Seeking consumer views: what use are results of
hospital patient satisfaction surveys? International Journal for Quality in Health Care
13(6), 463–468 (2001)

36. Dwyer III, S.J., Weaver, A.C., Hughes, K.K.: Health insurance portability and ac-
countability act. Security Issues in the Digital Medical Enterprise 72(2), 9–18 (2004)

37. Eisenberg, J.M.: Quality research for quality healthcare: the data connection. Health
services research 35(2), xii (2000)

38. Evans, W.E., Relling, M.V.: Pharmacogenomics: translating functional genomics into
rational therapeutics. science 286(5439), 487–491 (1999)



The State of Data In Healthcare 23

39. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu, T.,
Spener, F., van Meer, G., Wakelam, M.J., Dennis, E.A.: Update of the lipid maps com-
prehensive classification system for lipids. Journal of lipid research 50(Supplement),
S9–S14 (2009)

40. Feldman, B., Martin, E.M., Skotnes, T.: Big data in healthcare hype and hope. October
2012. Dr. Bonnie 360 (2012)

41. Feldman, K., Chawla, N.V.: Does medical school training relate to practice? evidence
from big data. Big data 3(2), 103–113 (2015)

42. Feldman, K., Faust, L., Wu, X., Huang, C., Chawla, N.V.: Beyond volume: The impact
of complex healthcare data on the machine learning pipeline. In: Towards Integrative
Machine Learning and Knowledge Extraction, pp. 150–169. Springer (2017)

43. Fenton, J.J., Jerant, A.F., Bertakis, K.D., Franks, P.: The cost of satisfaction: a na-
tional study of patient satisfaction, health care utilization, expenditures, and mortality.
Archives of internal medicine 172(5), 405–411 (2012)

44. Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., Sum-
ner, L.W., Goodacre, R., Hardy, N.W., Taylor, C., et al.: The metabolomics standards
initiative (msi). Metabolomics 3(3), 175–178 (2007)

45. Field, D., Garrity, G., Gray, T., Morrison, N., Selengut, J., Sterk, P., Tatusova, T.,
Thomson, N., Allen, M.J., Angiuoli, S.V., et al.: The minimum information about a
genome sequence (migs) specification. Nature biotechnology 26(5), 541–547 (2008)

46. Fisher, E.S., Baron, J.A., Malenka, D.J., Barrett, J., Bubolz, T.A.: Overcoming poten-
tial pitfalls in the use of medicare data for epidemiologic research. American Journal
of Public Health 80(12), 1487–1490 (1990)

47. Food, U., Administration, D., et al.: National drug code directory. Internet address:
http://www. fda. gov/cder/ndc/ (2011)

48. Gee, J., Button, M., Brooks, G.: The financial cost of healthcare fraud: what data from
around the world shows. Tech. rep., MacIntyre Hudson (2010)

49. Ginsburg, G.S., Willard, H.F.: Genomic and personalized medicine: foundations and
applications. Translational research 154(6), 277–287 (2009)

50. Gray, K.A., Yates, B., Seal, R.L., Wright, M.W., Bruford, E.A.: Genenames. org: the
hgnc resources in 2015. Nucleic acids research p. gku1071 (2014)

51. Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., Gerstein, M.: Interrelating
different types of genomic data, from proteome to secretome:’oming in on function.
Genome research 11(9), 1463–1468 (2001)

52. Greenfield, S., Nelson, E.C., Zubkoff, M., Manning, W., Rogers, W., Kravitz, R.L.,
Keller, A., Tarlov, A.R., Ware, J.E.: Variations in resource utilization among medical
specialties and systems of care: results from the medical outcomes study. Jama 267(12),
1624–1630 (1992)

53. Hall, L.M., Doran, D., Pink, G.H.: Nurse staffing models, nursing hours, and patient
safety outcomes. Journal of Nursing Administration 34(1), 41–45 (2004)

54. Hattie, J.A., Myers, J.E., Sweeney, T.J.: A factor structure of wellness: Theory, assess-
ment, analysis, and practice. Journal of Counseling & Development 82(3), 354–364
(2004)

55. Hays, R.D., Spritzer, K.L., Thompson, W.W., Cella, D.: Us general population estimate
for excellent to poor self-rated health item. Journal of general internal medicine 30(10),
1511–1516 (2015)

56. of Health, U.D., Services, H., et al.: ICD 9 CM. The International Classification of
Diseases. 9. Rev: Clinical Modification.; Vol. 1: Diseases: Tabular List. ; Vol. 2: Dis-
eases: Alphabetic Index. ; Vol. 3: Procedures: Tabular List and Alphabetic Index. US
Government Printing Office (1980)

57. of Health, U.D., Services, H., et al.: Us department of health and human services
implementation guidance on data collection standards for race, ethnicity, sex, primary
language, and disability status (2011)

58. on Accreditation of Healthcare Organizations, J.C.: Accreditation manual for hospitals,
vol. 1. Joint Commission on Accreditation of Healthcare Organizations (1991)

59. Hettler, B.: Wellness: encouraging a lifetime pursuit of excellence. Health values 8(4),
13 (1984)

60. Hibbard, J.H., Stockard, J., Tusler, M.: Hospital performance reports: impact on qual-
ity, market share, and reputation. Health Affairs 24(4), 1150–1160 (2005)



24 Feldman et al.

61. Horaitis, O., Cotton, R.G.: The challenge of documenting mutation across the genome:
the human genome variation society approach. Human mutation 23(5), 447–452 (2004)

62. Horgan, R.P., Kenny, L.C.: omictechnologies: genomics, transcriptomics, proteomics
and metabolomics. The Obstetrician & Gynaecologist 13(3), 189–195 (2011)

63. Huang, Y.T.: Integrative modeling of multiple genomic data from different types of
genetic association studies. Biostatistics 15(4), 587–602 (2014)

64. Jacob, S.G., Ramani, R.G.: Data mining in clinical data sets: a review. IJAIS-ISSN:
2249-0868 Foundation of Computer Science FCS, New York, USA 4(6) (2012)

65. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better
research applications and clinical care. Nature Reviews Genetics 13(6), 395 (2012)

66. Kailas, A., Chong, C.C., Watanabe, F.: From mobile phones to personal wellness dash-
boards. Pulse, IEEE 1(1), 57–63 (2010)

67. Kaplan, G.A., Pamuk, E.R., Lynch, J.W., Cohen, R.D., Balfour, J.L.: Inequality in
income and mortality in the united states: analysis of mortality and potential pathways.
Bmj 312(7037), 999–1003 (1996)

68. Kaplan, W.A.: Can the ubiquitous power of mobile phones be used to improve health
outcomes in developing countries? Globalization and health 2(1), 1 (2006)

69. Kass-Hout, T.A., Alhinnawi, H.: Social media in public health. British medical bulletin
108(1), 5–24 (2013)

70. Kayyali, B., Knott, D., Van Kuiken, S.: The big-data revolution in us health care:
Accelerating value and innovation. Mc Kinsey & Company pp. 1–13 (2013)

71. Kindig, D., Stoddart, G.: What is population health? American Journal of Public
Health 93(3), 380–383 (2003)

72. Landon, B.E., Normand, S.L.T., Blumenthal, D., Daley, J.: Physician clinical perfor-
mance assessment: prospects and barriers. Jama 290(9), 1183–1189 (2003)

73. Lave, J.R., Pashos, C.L., Anderson, G., Brailer, D., Bubolz, T., Conrad, D., Freund,
D.A., Fox, S.H., Keeler, E., Lipscomb, J., et al.: Costing medical care: using medicare
administrative data. Medical care 32(7), JS77 (1994)

74. Lemieux-Charles, L., McGuire, W.L.: What do we know about health care team effec-
tiveness? a review of the literature. Medical Care Research and Review 63(3), 263–300
(2006)

75. Lenfant, C.: Clinical research to clinical practice—lost in translation? New England
Journal of Medicine 349(9), 868–874 (2003)

76. Li, J., Huang, K.Y., Jin, J., Shi, J.: A survey on statistical methods for health care
fraud detection. Health care management science 11(3), 275–287 (2008)

77. Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T., Murray, C.J.: Global and
regional burden of disease and risk factors, 2001: systematic analysis of population
health data. The Lancet 367(9524), 1747–1757 (2006)

78. Marconi, K., Lehmann, H.: Big data and health analytics. CRC Press (2014)
79. McDonald, C.J., Huff, S.M., Suico, J.G., Hill, G., Leavelle, D., Aller, R., Forrey, A.,

Mercer, K., DeMoor, G., Hook, J., et al.: Loinc, a universal standard for identifying
laboratory observations: a 5-year update. Clinical chemistry 49(4), 624–633 (2003)

80. McGrath, M.J., Scanaill, C.N.: Wellness, fitness, and lifestyle sensing applications. In:
Sensor Technologies, pp. 217–248. Springer (2013)

81. McGraw-Hill: Concise dictionary of modern medicine. Online (2002). Accessed May
31, 2016

82. McLean, R.: Financial management in health care organizations. Cengage Learning
(2002)

83. for Medicare & Medicaid Services, C.: Hospital consumer assessment of healthcare
providers and systems. Online. URL http://www.hcahpsonline.org/home.aspx. Ac-
cessed May 31, 2016

84. for Medicare & Medicaid Services, C.: ICD-9-CM, ICD-10-CM, ICD-10-PCS, CPT,
and HCPCS code sets. Online (2015). Accessed May 31, 2016. ICN: 900943

85. for Medicare & Medicaid Services, C., et al.: Healthcare Common Procedure Coding
System (HCPCS). Centers for Medicare & Medicaid Services (2003)

86. Centers for Medicare & Medicaid Services, H., et al.: Hipaa administrative simplifi-
cation: standard unique health identifier for health care providers. final rule. Federal
register 69(15), 3433 (2004)



The State of Data In Healthcare 25

87. Meltzer, D.: Accounting for future costs in medical cost-effectiveness analysis. Journal
of health economics 16(1), 33–64 (1997)

88. Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the dicom standard.
European radiology 12(4), 920–927 (2002)

89. Müller, M., Kersten, S.: Nutrigenomics: goals and strategies. Nature Reviews Genetics
4(4), 315–322 (2003)

90. Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care.
Jama 309(13), 1351–1352 (2013)

91. Nelson, C.W., Niederberger, J.: Patient satisfaction surveys: an opportunity for total
quality improvement. Hospital & health services administration 35(3), 409–428 (1990)

92. Orchard, S., Hermjakob, H., Apweiler, R.: The proteomics standards initiative. Pro-
teomics 3(7), 1374–1376 (2003)

93. Organization, W.H., et al.: International classification of diseases (ICD) (2012)
94. Organization, W.H., et al.: Global reference list of 100 core health indicators (2015)
95. Ostherr, K., Borodina, S., Bracken, R.C., Lotterman, C., Storer, E., Williams, B.:

Trust and privacy in the context of user-generated health data. Big Data & Society
4(1), 2053951717704,673 (2017)

96. Pol, L.G., Thomas, R.K.: The demography of health and health care. Springer Science
& Business Media (2000)

97. Pol, L.G., Thomas, R.K.: Health demography: An evolving discipline. In: The Demog-
raphy of Health and Healthcare, pp. 1–12. Springer (2013)

98. Poulton, B.C., West, M.A.: The determinants of effectiveness in primary health care
teams. Journal of Interprofessional Care 13(1), 7–18 (1999)

99. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and po-
tential. Health Information Science and Systems 2(1), 3 (2014)

100. Registrar, F.: Revisions to the standards for the classification of federal data on race
and ethnicity. Federal Registrar 62, 58,781–58,790 (1997)

101. Retchin, S.M., Ballard, D.: Commentary: establishing standards for the utility of ad-
ministrative claims data. Health services research 32(6), 861 (1998)

102. Richard, L., Gauvin, L., Raine, K.: Ecological models revisited: their uses and evolution
in health promotion over two decades. Annual review of public health 32, 307–326
(2011)

103. Riley, G.F.: Administrative and claims records as sources of health care cost data.
Medical care 47(7 Supplement 1), S51–S55 (2009)

104. Rosenbloom, S.T.: Person-generated health and wellness data for health care (2016)
105. Safran, C., Bloomrosen, M., Hammond, W.E., Labkoff, S., Markel-Fox, S., Tang, P.C.,

Detmer, D.E., et al.: Toward a national framework for the secondary use of health data:
an american medical informatics association white paper. Journal of the American
Medical Informatics Association 14(1), 1–9 (2007)

106. Schiller, J.S., Adams, P.F., Nelson, Z.C.: Summary health statistics for the us popu-
lation: National health interview survey, 2003. Vital and health statistics. Series 10,
Data from the National Health Survey 2005(224), 1–104 (2005)

107. Schneider, M.V., Orchard, S.: Omics technologies, data and bioinformatics principles.
Bioinformatics for Omics Data: Methods and Protocols pp. 3–30 (2011)

108. Shameer, K., Badgeley, M.A., Miotto, R., Glicksberg, B.S., Morgan, J.W., Dudley,
J.T.: Translational bioinformatics in the era of real-time biomedical, health care and
wellness data streams. Briefings in bioinformatics p. bbv118 (2016)

109. Shapiro, M., Johnston, D., Wald, J., Mon, D.: Patient-generated health data. RTI
International, April (2012)

110. Shekelle, P.G., Ortiz, E., Rhodes, S., Morton, S.C., Eccles, M.P., Grimshaw, J.M.,
Woolf, S.H.: Validity of the agency for healthcare research and quality clinical practice
guidelines: how quickly do guidelines become outdated? jama 286(12), 1461–1467
(2001)

111. Shryock, H.S., Siegel, J.S., Larmon, E.A.: The methods and materials of demography.
US Bureau of the Census (1973)

112. Siegel, J.S.: The demography and epidemiology of human health and aging. Springer
Science & Business Media (2011)

113. Skelly, A.C., Dettori, J.R., Brodt, E.D.: Assessing bias: the importance of considering
confounding. Evidence-based spine-care journal 3(1), 9 (2012)



26 Feldman et al.

114. Smith, H.L.: Some thoughts on causation as it relates to demography and population
studies. Population and Development Review 29(3), 459–469 (2003)

115. Stanhope, M., Lancaster, J.: Public health nursing: Population-centered health care in
the community. Elsevier Health Sciences (2015)

116. Stoto, M.A.: Population health in the Affordable Care Act era, vol. 1. AcademyHealth
Washington, DC (2013)

117. Suetens, P.: Fundamentals of medical imaging. Cambridge university press (2009)
118. Taber, K.A.J., Dickinson, B.D., Wilson, M.: The promise and challenges of next-

generation genome sequencing for clinical care. JAMA internal medicine 174(2), 275–
280 (2014)

119. Taylor, C.F.: Standards for reporting bioscience data: a forward look. Drug discovery
today 12(13), 527–533 (2007)

120. Taylor, C.F., Paton, N.W., Lilley, K.S., Binz, P.A., Julian, R.K., Jones, A.R., Zhu, W.,
Apweiler, R., Aebersold, R., Deutsch, E.W., et al.: The minimum information about a
proteomics experiment (miape). Nature biotechnology 25(8), 887–893 (2007)

121. Tebani, A., Afonso, C., Marret, S., Bekri, S.: Omics-based strategies in precision
medicine: toward a paradigm shift in inborn errors of metabolism investigations. In-
ternational journal of molecular sciences 17(9), 1555 (2016)

122. Van Ommen, B., Stierum, R.: Nutrigenomics: exploiting systems biology in the nutri-
tion and health arena. Current opinion in biotechnology 13(5), 517–521 (2002)

123. Veeramah, K.R., Hammer, M.F.: The impact of whole-genome sequencing on the re-
construction of human population history. Nature Reviews Genetics 15(3), 149–162
(2014)

124. Ware, J.E., Snyder, M.K., Wright, W.R., Davies, A.R.: Defining and measuring patient
satisfaction with medical care. Evaluation and program planning 6(3), 247–263 (1983)

125. Wenk, M.R.: The emerging field of lipidomics. Nature Reviews Drug Discovery 4(7),
594–610 (2005)

126. West, M., Ginsburg, G.S., Huang, A.T., Nevins, J.R.: Embracing the complexity of
genomic data for personalized medicine. Genome research 16(5), 559–566 (2006)

127. Whetzel, P.L., Parkinson, H., Causton, H.C., Fan, L., Fostel, J., Fragoso, G., Game, L.,
Heiskanen, M., Morrison, N., Rocca-Serra, P., et al.: The mged ontology: a resource for
semantics-based description of microarray experiments. Bioinformatics 22(7), 866–873
(2006)

128. Wilkinson, R.G., Marmot, M.G.: Social determinants of health: the solid facts. World
Health Organization (2003)

129. Williams, G.H.: The determinants of health: structure, context and agency. Sociology
of Health & Illness 25(3), 131–154 (2003)

130. Wood, W.A., Bennett, A.V., Basch, E.: Emerging uses of patient generated health
data in clinical research. Molecular oncology 9(5), 1018–1024 (2015)

131. Wu, P.Y., Cheng, C.W., Kaddi, C.D., Venugopalan, J., Hoffman, R., Wang, M.D.:
–omic and electronic health record big data analytics for precision medicine. IEEE
Transactions on Biomedical Engineering 64(2), 263–273 (2017)

132. Wunsch, G., et al.: Confounding and control. Demographic research 16(4), 97–120
(2007)

133. Yumak, Z., Pu, P.: Survey of sensor-based personal wellness management systems.
BioNanoScience 3(3), 254–269 (2013)


