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Beyond Clinical Accuracy: Considerations for the Use of ®

Updates

Generative Artificial Intelligence Models in Gastrointestinal Care

See “ChatGPT answers common patient
questions about colonoscopy,” by Lee T-S,
Staller K, Botoman V, et al, on page 509.

As the volume and complexity of health care data
continue to grow, the field of gastroenterology has
embraced the use of computational tools to identify, extract,
and synthesize relevant information." Rapidly expanding
from the use of medical record data only, machine
learning and artificial intelligence (AI) techniques now
routinely integrate data from procedural images and free-
text documents (eg, clinical notes, academic articles, and
online resources).”” Clinically, this has manifested in
predictive models and risk stratification tools to improve
prognosis, diagnosis, treatment, and patient management.4
For patients, unparalleled access to digital resources has

facilitated engagement in their care.” It is largely
understood that these tools cannot, and should not,
replace gastroenterologists. However, the ability to

leverage this technology in an assistive capacity is
fundamentally changing the way clinicians and patients
interact with data.

One notable change already impacting health care is the
ability to streamline navigation of health-centric resources.
In this issue of Gastroenterology, Lee and colleagues®
explored an application of such, assessing the potential of
ChatGPT, an emerging natural language processing
technology, to provide patients with accurate and
understandable answers to common questions regarding
colonoscopy. As patients turn increasingly to online
resources,” this information is often available through
health care system’s online frequently asked questions.
However, the static nature of these webpages limits utility
when questions do not align with prespecified items. It
has thus become necessary to expand both the way in
which information can be requested and how, once
identified, insights are provided for consumption.

Early natural language processing efforts used chatbots
that allowed patients to dynamically enter free-text ques-
tions.” However, these models largely operated akin to voice
assistants, capturing key phrases in questions and providing
responses from a limited set of predefined data. Conversely,
this emergent class of natural language processing
(colloquially known as “generative Al”), leverages large-
scale language models to capture the context of a question
and produce meaningful responses based on information
from a broader set of general health data.” The authors’
primary result highlights a high-degree of clinical accuracy
in ChatGPT’s response to 8 questions. However, it is their
secondary analyses, evaluating the ease of understanding
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and reliability of Al-generated responses, where we find a
core theme surrounding the future use of these models in
practice, that is, data and information quality.

The concept of quality is multifaceted, and to understand
how these tools impact patients and clinicians, we must
consider multiple factors jointly. We broadly characterize
these factors into 3 domains—performance, appropriate-
ness, and accessibility.

Performance

At its core, utility of generative Al is contingent on an
ability to provide accurate, complete, and reliable informa-
tion. Highlighted by Lee et al and others,*'*!! these tools
can produce results with a reasonable degree of clinical
accuracy. However, factual inaccuracies known to be
contained in the web resources used to build responses’?
pose a risk for providing inaccurate information and must
be monitored carefully. Moreover, response quality has
been found to be dependent on how questions are
asked.”® Thus, appropriately framing clinical questions
may present a barrier for lay patients to obtain precise
answers.

Furthermore, the machine learning and Al models on
which these tools are built are probabilistic and, as
demonstrated by Lee et al,® can produce different answers
to the same question. This lack of reliability creates a
challenge for clinicians to guide patients to specific
information and for counseling them based on expected
results.

Recent studies have noted that even accurate and reli-
able results may be incomplete, failing to provide necessary
information to fully contextualize health care scenarios.** As
US Food and Drug Administration regulations on monitoring
performance of dynamic models remain in the early
stages,’” a methodology to quantify uncertainty or safety
of responses is needed.

Appropriateness

As medical knowledge continues to progress, the use of
generative Al in practice will be dependent on its ability to
provide up-to-date information. Although these tools can
have access to even the most recent data, their ability to
convey and account for data that changes over time remains
unclear. Similarly, there exists a need to disambiguate data
from varying sources, such as differentiating between
established clinical standards and emerging research. This
complexity is compounded in situations where multiple
current resources may conflict (eg, different guidelines on
colorectal cancer screening'®). Addressing such variability
will be a key factor for successful implementation of these
tools in rapidly advancing gastroenterology practice.

Downloaded for Anonymous User (n/a) at Children's Mercy Kansas City from ClinicalKey.com by Elsevier on July 22,
2023. For personal use only. No other uses without permission. Copyright ©2023. Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1053/j.gastro.2023.06.006&domain=pdf

EDITORIALS

In addition, the data used to build these tools present a
challenge to their equitable use.'” Historical data are known
to contain biases perpetuated through society. They may
not be representative of all individuals who intend to use
this tool and may impact the ability to provide
appropriate responses. As such, transparency around what
data are used to build these models must be improved
before widespread use.

Accessibility

At a fundamental level, these models are trained on a
breadth of data beyond that accessible to most individuals.
Synthesizing this information presents an opportunity to
broaden access and may aid in reducing disparities in un-
derserved communities.'® However, information alone
provides little utility if it cannot be understood. Health
literacy remains a barrier in providing usable responses to
complex health-related questions.’” As reported by Lee at
al,’® ChatGPT’s response readability exceeded the 8th-grade
level, limiting utility for a subset of patients and
potentially widening the gap to health care access.
Moreover, as the underlying process to generate the
responses results from the output of complex neural
models, explaining why specific information was provided
remains challenging, limiting clinician’s ability to moderate
or explain concerns that may arise based on the use of
such tools.”’

Although generative Al remains in its infancy, the
ability to leverage the flexibility and broad knowledge
base of these tools holds the potential to augment and
assist multiple aspects of gastrointestinal care. However,
work by Lee et al° and others lays a foundation for a
range of quality metrics needed for its successful
implementation. Although clinical accuracy of these tools
is necessary, it is not sufficient, and addressing the full
spectrum of such is a grand challenge for the coming
years and will require the collaborative efforts of
patients, clinicians, and computational scientists alike.
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