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Machine Learning Algorithm Improves the Prediction of
Transplant Hepatic Artery Stenosis or Occlusion
A Single-Center Study

Keith Feldman, PhD,*† Justin Baraboo, MSc,‡ Deeyendal Dinakarpandian, PhD,§
and Sherwin S. Chan, MD, PhD∥¶
Abstract: The aim of this study was to determine if machine learning
can improve the specificity of detecting transplant hepatic artery pa-
thology over conventional quantitative measures while maintaining a
high sensitivity.
This study presents a retrospective reviewof 129 patients with transplanted
hepatic arteries.We illustrate how beyond common clinical metrics such as
stenosis and resistive index, a more comprehensive set of waveform data
(including flow half-lives and Fourier transformed waveforms) can be inte-
grated into machine learning models to obtain more accurate screening of
stenosis and occlusion. We present a novel framework of Extremely
Randomized Trees and Shapley values, we allow for explainability at
the individual level.
The proposed framework identified cases of clinically significant steno-
sis and occlusion in hepatic arteries with a state-of-the-art specificity of
65%, while maintaining sensitivity at the current standard of 94%.
Moreover, through 3 case studies of correct and mispredictions, we
demonstrate examples of how specific features can be elucidated to
aid in interpreting driving factors in a prediction.
This work demonstrated that by utilizing a more complete set of wave-
form data and machine learning methodologies, it is possible to reduce
the rate of false-positive results in using ultrasounds to screen for trans-
plant hepatic artery pathology compared with conventional quantitative
measures. An advantage of such techniques is explainability measures
at the patient level, which allow for increased radiologists' confidence
in the predictions.
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E ach year, more than 9000 Americans will undergo liver trans-
plant because of conditions such as acute liver failure, chole-

stasis, or tumor growth. Although liver transplant is a lifesaving
event, challenges for these patients do not end with a completed
operation. The complex vascular reconstruction required in
transplanting a new liver graft results in high risks for organ
loss due to thrombosis, occlusion, and/or stenosis in the
reconstructed vessels.

Despite improved procedural techniques and careful obser-
vation, vascular complication rates remain high and cause mea-
surable patient harm. Early hepatic artery thrombosis occurs in
~5% of transplant recipients and is implicated in 53% of graft
losses and 33% of deaths in the early postoperative period. Late
hepatic artery thrombosis is associated with transplanted organ
failure and sepsis. Late hepatic artery thrombosis also has a dev-
astating effect on the lining of the bile ducts leading to liver graft
loss. Similarly, hepatic artery stenosis occurs often within
3 months in 11% of transplantation recipients and can develop
into biliary ischemia, which again may lead to liver graft loss.1

Given these risks, patients are screened regularly post-
transplantation using spectral Doppler ultrasound (US) imaging.
To aid in diagnosis, several quantitative measures have been
proposed to quantify risk, including the resistive index (RI), ste-
nosis index (SI; ratio of area under the high-frequency signal to
low-frequency signal in the spectral Doppler), acceleration time
(AT), and peak systolic velocity.2 However, as false-negative USs
can result in disastrous consequences, including liver graft loss, a
conservative threshold is often taken, resulting in false-positive
rates as high as 27% to 40%. For example, RI (the most com-
monly used single metric) has a shown consistent sensitivity of
60% to 62% and specificity of 77% to 80% for detecting arterial
stenosis across a body of literature.3–7 Patients with a positive US
screening must then undergo an invasive angiogram or computed
tomography angiogram. However, the angiogram itself presents
several considerations, first, a monetary cost ranging from ~
$15,000 to $30,000, and second, a 5% to 10% major complica-
tion rate including bleeding, clotting, vessel injury, and infection.

As such, there exists a significant incentive to improve
screening specificity and reduce unnecessary angiograms with-
out comprising the screening test's sensitivity in identifying pa-
tients who need intervention. We posit such a shift is possible
through the utilization of data extracted from the complete
Doppler waveform. Doing sowould greatly expand the quantity
Ultrasound Quarterly • Volume 39, Number 2, June 2023
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FIGURE 1. Spectral Doppler waveformof the right hepatic artery
in a 63-year-old man with right hepatic artery stenosis by
angiography. This is an example of excluded (invalid) waveform.
Note the dropout of the spectral Doppler signal as the patient
breathes.
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of data that must be analyzed at the point of diagnosis, introduc-
ing challenges for any individual to assess multiple sources of
potentially differing results. Data-driven machine learning tech-
niques are well suited for such a task and have become increas-
ingly common in the radiology field. Often associated with deep
learning, extensive work has demonstrated success for image
analysis of various liver conditions.8,9 However, recent works
on more interpretable machine learning approaches have been
applied in a variety of hepatology tasks ranging from ability to
predict graft failure at the time of transplant,10 to early detection
of patients with non-alcoholic fatty liver disease, to prediction of
acute kidney injury post-transplant or cirrhosis outcomes for viral
hepatitis.11 Using an extraction technique developed by our group,
this work presents a novel interpretable approach to identifying ste-
nosis and occlusion in post-transplantation patients.

In line with the Checklist for Artificial Intelligence in
Medical Imaging,12 This article begins with a comprehensive
description of the data, feature engineering, and study design.
Next, it outlines a novel framework for the prediction of stenosis
and occlusion using data derived from the complete waveform.
From there, detail is provided around the evaluation of the pro-
posed framework, for both performance and interpretability.
This article concludes with a discussion of the clinical implica-
tions of the framework results and highlights ongoing work to
push techniques closer to practice.

MATERIALS AND METHODS

Study Design and Data
This article undertakes a secondary retrospective analysis

of an existing deidentified dataset of Doppler USwaveform data
collected from January 1, 2006, to December 31, 2010, from a
single large tertiary medical center. The data were collected by
first identifying all patients who underwent mesenteric catheter
angiography using a searchable index of radiology reports
(zVision, Clario Medical, Seattle, WA). Reports were then re-
viewed by members of the study team to identify any patient
with hepatic allografts who underwent angiographic evaluation
of the transplanted hepatic arteries. All subject datawere collected
retrospectively, under a University of Washington–approved institu-
tional review board protocol with a waiver of informed consent and
deidentified upon release from the study center. The study was ap-
proved by a local institutional review board, and requirement for in-
formed consent was waived.

From these, every patient who underwent spectral Dopp-
ler US of the transplanted hepatic arteries within 30 days preced-
ing their angiographic procedure was included. However, these
patients alone may represent an inherently biased sampled, as
those who underwent angiography may have done so as they
were considered high probability to have stenosis by US. Also,
patients whose arteries were found to be occluded on angiogra-
phy may have had a patent arterial system on the preceding US
or had collateral circulation. To better study US-driven stenosis
identification, we also performed extensive chart review to iden-
tify a population that was considered low risk to have stenosis by
US and had anatomic imaging to verify they truly did not have
stenosis. This search identified a cohort of patients who had
liver transplants and contrast-enhanced computed tomography
(CT) and Doppler transplant US evaluation in the 30 days before
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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the CT examination. We chose 60 consecutive patients in this
cohort for inclusion. In this cohort, each CT was evaluated by
a board-certified radiologist to ensure no hepatic arterial abnor-
malities were present (stenosis or occlusion).

In total, the search produced a cohort of 159 liver trans-
plant recipients. All transplants were full orthotopic liver trans-
plants. A set of exclusion criteria were then applied. Specifi-
cally, we excluded patients who did not have sufficient quality
spectral Doppler tracings from both the left and right hepatic ar-
teries. We defined sufficient quality waveforms as ones that
contained 3 consecutive accuratewaveformswithout signal loss.
We chose this metric because this waveform quality is required
to accurately calculate one of the baseline measures (SI). Sub-
stantial noise included breathing artifact that causes signal drop-
out and movement of the artery during acquisition; an example
of an invalid waveform can be found in Figure 1.

After exclusion, a final cohort of 129 patients remained
(75 without pathology, 54 with stenosis/occlusion) for analysis.
In addition to the waveform, patients' age and sex were re-
corded. An overview of demographics for the final cohort by
outcome can be found in Table 1.

Data Preprocessing and Feature Engineering
We used the available spectral Doppler waveform record-

ings (~7 seconds) in hepatic transplant screening USs and ap-
plied a feature engineering process to derive meaningful mea-
sures of the waveform shape. We began with the derivation of
common clinical metrics such as AT, SI, and RI, as well as left
and right half-life to capture the rate of rise of the systolic wave
and the rate of decline of the diastolic wave (defined in Table 2).
Next, utilizing work previously published by our group, thewave-
form was decomposed, from which the top 10 principal compo-
nents were extracted to capture quantitative measures of waveform
shape.13 Together, these features will provide model-based ap-
proaches a more comprehensive view of an individual patient
as compared with any single screening metric. A complete list-
ing of variables and definitions can be found in Table 2.
www.ultrasound-quarterly.com 87
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TABLE 1. Demographic Attributes of Study Cohort

No Stenosis/Occlusion (n = 79) Stenosis/Occlusion (n = 54) P*

Age, mean (SD) 55.59 (9.41) 53.52 (9.20) .025

Sex Male: 82.67%, female: 17.33% Male: 68.52%, female: 31.48% .090

*Statistical comparisons were made using Mann-Whitney U and Fisher's exact tests for age and sex, respectively.
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It is common for multiple waveforms to be recorded in a
single screening. Multiple samples allow increased confidence
in evaluating thewaveform shape. To guard against the potential
bias of sonographers recording more images in challenging or
worrisome cases, the values derived across multiple waveforms
in collected in an imaging series were collapsed into a single
vector per patient. Rather than simply take a mean value, aggre-
gation operations were selected to align with relationships be-
tween each feature and the clinical pathology of restricted blood
flow that arises due to stenosis or occlusion. As US is a screen-
ing examination, we use the most worrisome value to summa-
rize risk. Specifically, the minimum value of each metric was
taken for the SI and RI to capture reduced measures of flow,
as well as all derived principal component features. The maxi-
mum values of the left and right half-lives and AT were used
as those metrics are expected to be higher in cases of stenosis
or occlusion. Finally, the mean frequency was used as it corre-
sponds to a patient's average heart rate.

Ground Truth and Outcome Definition
Angiography images were rigorously evaluated to deter-

mine ground truth for stenosis and/or occlusion. An interven-
tional radiologist examined each angiogram for pathology and
compared their impression with the clinical report. If there was
a discrepancy between the report and review, a second reader
was used to break the tie. For each subject, positive outcomes
were assigned for significant angiographic stenosis (>50% ste-
nosis) requiring intervention, angioplasty, and/or stenting, as
well as hepatic artery occlusion. In addition to reviewing imag-
ing studies for patients who underwent only CT, the subject's
medical records were also reviewed until December 31, 2010,
to ensure they did not undergo later intervention.

METHODS
Taking the vector of derived waveform features for each

patient, the proposed framework is centered on the specification
of an Extremely Randomized Tree (ERT) model.14 Similar to
random forests, ERTs extend the concept of a single decision
tree into an ensemble paradigm, where many trees are trained
on various combinations of features and instances. However,
in contrast with random forests, ERTs are designed to split at
a random threshold within each feature, rather than utilizing a
best splitting criterion to optimize tree-building. As our dataset
contains known predictors of stenosis in the SI and RI features,
which would likely dominate Gini/Entropy-based measures of
feature importance, random splitting offers a means to reduce
the variance of the final model and further improve generaliz-
ability for the proposed framework.

Extremely Randomized Tree models are composed of
several parameters known to have a significant impact on the
overall model performance.15,16 As such, the methods below
88 www.ultrasound-quarterly.com
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present a framework for tuning the model to the improve
false-positives rates while maintaining high levels of sensitivity
in identifying cases of stenosis and occlusion. This approach is
broken into 2 primary elements: first, testing a range of
hyperparameters used to define the ERT structure (eg, number
of trees in the forest, how many waveform features to consider
in each tree), and second, within each hyperparameter set, deter-
mination of the optimal threshold for the estimated model prob-
ability to define a stenosis/occlusion case. This allows us to set
an acceptable sensitivity level and utilize a bootstrap approach
across training data to identify a threshold of stenosis/occlusion
probability that maximize specificity. Detailed methodology of
each component is provided in the sections to follow, whereas
a visual overview of the framework can be found in Figure 2.

Model Specification and Hyperparameter Tuning
First, a grid search was performed encompassing the fol-

lowing features [possible values]: the number of trees [1000,
2000], number of features used [4, 8, 12], maximum depth of
the tree [3, 5, unbounded], minimum number of samples re-
quired to split a node [5, 10, 15, 30], and the minimum number
of samples required to be at a leaf [5, 10, 15, 30]. In total, 288
distinct parameter combinations were evaluated in parallel.

Classifier Threshold and Grid Search Evaluation
Next, for each configuration in the grid search, model per-

formance was compared through measures of sensitivity (true-
positive rate) and specificity (true-negative rate). However,
given the screening nature of this evaluation, and the significant
adverse cost of false-negatives, it is likely the default classifier
threshold (0.5) is insufficient to meet the current clinical state-
of-the-art. Adjustment of this threshold is often done post hoc
by identifying a satisfactory balance of sensitivity/specificity
using a receiver operating curve (ROC). However, as we are
evaluating across hundreds of dependent datasets (same data,
different model parameters), repeatedly assessing performance
can represent a form of data snooping. Rather, an internal vali-
dation approach was used to do so in less biased manner.

First, within each hyperparameter configuration, a
1000-iteration bootstrap was conducted. Bootstrapping is a
statistical technique in which instances are sampled with re-
placement until the size of the original dataset is reached. In do-
ing so, approximately 37% of instances are known to be ex-
cluded, known as out-of-bag (OOB) samples.17 By training an
ERT model on the resampled data, we were able to compute
the ROC using the OOB samples as an ad hoc test set. Then,
starting at the highest sensitivity, iterate backward to determine
the lowest threshold at which sensitivity exceeded the clinical
state-of-the-art performance. Here, state-of-the-art sensitivity
was considered to be 94%, in line with the performance of SI
as found by Le et al.2 The threshold value of the ROC was
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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recorded, and the process was repeated. At the conclusion of the
bootstrap iterations, the median threshold was selected.

As the threshold itself is now a parameter estimate, it was
important to compute the expected sensitivity and specificity to
ensure that the state-of-the-art sensitivity can still be achieved
and to measure the expected specificity gains through the
model-based approach. As such, the 1000-iteration bootstrap
was repeated using the same randomization; however, rather
than use OOB samples to explore the range of predicted proba-
bilities, the predictive performance of the OOB samples at the
identified threshold was evaluated as a binary classification.

Once the grid search was completed, the optimal hyper-
parameter set was selected as the configuration with the highest
sensitivity. In the event that 2 or more configurations had iden-
tical specificity performance, that with the highest estimated
sensitivity was selected. Should there remain ties across both
metrics, a configuration would be selected at random. The ERT
with the selected hyperparameters was then retrained on the com-
plete training data and evaluated as detailed below. All analyses
were completed using Python 3.7.6, Pandas 1.0.1,18 SciPy 1.4.1,
NumPy 1.18.1,19 and scikit-learn 0.22.1.20

Evaluation
To assess the generalized performance of the proposed

methodology, 5-fold cross-validation (CV) was used. Given the
natural imbalance between outcome classes, stratified K-fold
was utilized to ensure each test set contained a representative pro-
portion of stenosis and occlusion cases as was seen across the
study cohort. To prevent any data leakage, test data in each fold
were never used in any aspect of the framework until evaluation
on the final parameter configuration, and an independent grid
search and bootstrap evaluation were repeated across the subset
of training data of each fold. In line with recent literature to im-
prove the robustness of CV results, 10 independent iterations of
5-fold CV were performed, each with a different random seed
and subsequently test/train splits. Such work has empirically
demonstrated summarization of performance across 10 indepen-
dent runs, averaging within the 5 folds of each independent CV,
and provides a more reliable estimate of model generalization
than assessing the variance across the 5-fold CV or the perfor-
mance across a single 10-fold CV alone.21 On each of the same
testing datasets, we also implemented a series of model baselines
using measures of RI and SI. These included evaluating com-
monly clinically accepted thresholds of RI < 0.5, RI < 0.4, and
SI < 1.35. In addition, for the RI metric, we replicated the model
approach of utilizing the training data to identify a threshold with
a sensitivity of 94% and evaluated the distribution of specificity
values across the repeated K-folds.

Model Interpretability
Although aiding in generalizability, the ensemble nature

of the forest of discrete trees produced by the ERT model pre-
cludes outputting of a single decision pathway for any one test
subject. However, providing insight into the model's operation
is paramount for clinical acceptance of any such tool. To do
so, we took 2 approaches to elucidate model behavior.

First, at a macrolevel, we computed feature importance in
the ERTmodel selected from the grid search and fit across the full
set of training data, before testing. Specifically, we utilized the Gini
www.ultrasound-quarterly.com 89
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FIGURE 2. Workflow of the proposed framework. 1, Training data from a CV fold is run through a grid search. For each parameter,
configuration bootstrap sampling is used on the CV-fold's training data to determine a threshold at which state-of-the-art sensitivity is
obtained using out-of-bag samples. 2, For the same grid search parameters, this threshold is used to estimate expected specificity of the
model. 3, Grid search results are sorted and the configuration maximizing specificity (ties broken by highest sensitivity) is then used to
train a final model run once to quantify performance on held out test data for the respective fold. The process is then repeated for each
of the 5 CV test folds, and then overall across the 10 independent CV runs to estimate overall performance.
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impurity importance and recorded the distribution of feature scores
across each of the 50 runs.

Second, at an individualized level, we utilized the model
interpretability package SHAP to present a case study demon-
strating how Shapley values can provide insight into the specific
features that drive an outcome prediction for an unseen test
instance.22 Case study patients were selected from a random
test set and included a stenosis case, a control case, and a
misprediction. Utilizing the final ERTmodel, a SHAP explainer
was trained to learn the association between model output and
the magnitude/directionality of feature values. Each test case
was explored individually.
RESULTS
Given the intended use case of the Doppler US as a he-

patic screening test for posttransplantation patients, the results
of the proposed framework summarize the performance of both
90 www.ultrasound-quarterly.com
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sensitivity and specificity2 in the detection of stenosis and/or oc-
clusion. Utilizing the aggregation recommendations, the results
of both metrics were collapsed within the runs comprising a sin-
gle 5-fold validation. Comprehensive summary statistics were
then computed for each metric across each of the 10 indepen-
dent runs, including measures of central tendency (mean), mea-
sures of variability (standard deviation) as well as the minimum
and maximum for a sense of overall performance distribution.

The results of this process can be found in Table 3.
When compared with the threshold of RI < 0.5 in this dataset,
the proposed model was found to achieve significantly higher
sensitivity (0.94 vs 0.85) compared with specificity (0.65 vs
0.75). In addition, when RI and the model were tested using
similar conditions, the sensitivities of both tests were similar
but the model had higher specificity compared with RI alone
(65% vs 30%).

For the readers' convenience, we also present boxplots of
the performance across the 5 folds of each of the independent
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 3. Performance Results of the Machine Learning Model

Sensitivity Specificity

Model Mean (SD) 0.95 (0.01) 0.65 (0.03)

Min/Max 0.93/0.96 0.60/0.68

RI constrained Mean (SD) 0.94 (0.01) 0.30 (0.03)

Min/Max 0.93/0.95 0.26/0.35

Discrete threshold RI < 0.5 0.85 0.75

RI < 0.4 0.63 0.84

SI < 1.35 0.87 0.52

These values represent the distribution of results across the 10 independent
runs (j) of the framework. Each run encompasses a 5-fold CV (k), from which
the mean value is used as per the j-k-fold evaluation technique for improved es-
timates of generalizability. Baseline RI and SI are provided utilizing identical j-k-
fold test. RI constrained represents average RI performance when constrained to
achieve the same 94% sensitivity as the model. SD/Min/Max are not provided
across the folds as results were stable (SD < 0.01) with Min/Max within 0.01.

Max, maximum; Min, minimum.
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CV runs. Notably, the results are highly stable, suggesting reli-
ability in the threshold selection training process (Fig. 3).

Model Interpretability
Macro-level

We first looked at global measures of ERT feature impor-
tance. The mean importance for each feature was computed
across the 5 folds of each run.We then examined the distribution
of these importances across the 10 runs using the boxplots
found in Figure 4.

Individual Level
Looking next to an individual subject, SHAP allowed us

to shed light on how thewaveform attributes of a patient contrib-
ute to the probability of stenosis as estimated by the ensemble.

To do so, we utilized representations known as force
plots.23 These figures quantify the culminative effect of each
feature's contribution to the final prediction, using a type of
FIGURE 3. Distributions of sensitivity and specificity across the 10 in
value. Red dashed lines represent the SI performance: sensitivity, 0.9

© 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2023 Wolters Kluwer H
tug-of-war approach. Utilizing the relationships learned be-
tween feature values and outcomes during model training, ar-
rows pointing right indicate the value of a patient's respective
feature would increase their probability of a stenosis/occlusion
outcome, whereas arrows pointing left indicate increased prob-
abilities of a negative outcome. The length of the arrow is rela-
tive to the overall magnitude of the feature's contribution to the
outcome determination as defined by its SHAP value. Results of
this process can be found in Figure 5A and B for a positive and
negative example, respectively. An example of a misprediction
can be seen in Figure 5C, where the model predicted a stenosis
diagnosis, with ground truth of a negative patient.
DISCUSSION
This study has presented an automated machine learning

framework for the detection of clinically significant stenosis
and occlusion in hepatic arteries after liver transplantation. A
more comprehensive set of features derived from the full spec-
tral Doppler US waveform was used as compared with common
quantitative point estimates used today. Our approach was able
to achieve a sensitivity and specificity of 94% and 65%, respec-
tively. This is an improvement over current SI and RI metrics
alone, which have sensitivities of 94% to 96% and 60% to
62% and specificities of 29% to 52% and 77% to 80%, respec-
tively. The specificity of the machine learning algorithm is ob-
jectively low, but this dataset is also biased toward patients
who were extremely difficult to diagnose by US. This is evi-
denced by the fact that 58% (75/129) of the patients went on
to angiography after their US examinations.

Notably, the clinical implications of increasing specificity
while maintaining state-of-the-art sensitivity are considerable,
namely a decrease in false-positives that currently go on for
angiographic evaluation. This in turn would save patients from
undergoing unnecessary procedures and save money. The ideal
implementation of this model would be achieved through col-
laboration with US manufacturers to include this measure on
their machines. The second possible implementation would be
dependent runs of 5-fold CV. Dark blue lines indicate the median
4; specificity, 0.52.
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FIGURE 4. Distribution of mean feature importance across the 5-folds of each of the 10 CV runs. PCA (1 to 10) indicates principle
component analysis axis.
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to create stand-alone software to calculate the risk of pathology
from the already acquired waveforms. In either case, the imple-
mented software could calculate a prediction from the wave-
form in seconds, making this easy to integrate into normal
clinical practice.

Moreover, a primary advantage of our proposed framework
over deep learningmodels is the potential for explainability rather
than simply a probability estimate. Using the approximation tech-
niques of SHAP, the case study on patient-level interpretability
highlights several interesting findings. For example, in the correct
stenosis prediction (Fig. 5A), the patient's age and SI actually de-
crease the stenosis probability (as indicated by the left-facing ar-
rows). However, the magnitude of the RI, together with aspects of
half-life and AT, was strongly related (noted by the length of the
array) to the positive class and the model's overall correct positive
prediction. Similarly, in themisprediction, we find that RI and left
half-life were somewhat indicative of a negative screening (small,
left-facing arrows), whereas SI was strongly associated with a
positive outcome based on the training data ERT. Thus, by offer-
ing tangible insight into specific features driving risk for an in-
dividual patient, it is possible to help guide care plans and prac-
titioner focus, allowing a radiologist to easily identify areas for
further evaluation or offer a compelling reason to justify dis-
agreement with the algorithm.

Limitations
It is important to note 2 limitations regarding the fea-

tures and cohort. First, the use of principal component analy-
sis as a part of the model does impede the interpretability of
the model when those components are a large part of the indi-
vidual prediction. This is because principal components do
not have a clear waveform correlate. In the future, we intend
to explore the use of alternative dimensionality reduction ap-
proaches such as factor analysis to improve interpretability of
the model.

Next, although an effort was made to collect negative
samples from both those who underwent angiography and those
92 www.ultrasound-quarterly.com

Copyright © 2023 Wolters Kluwer 
not referred for additional screening, the use of only 60 CT con-
trols may have influenced the imbalance ratio. In a screening
population, the controls will greatly outnumber patients with
stenosis/occlusion. Therefore, the study population has a higher
rate of positives relative to the normal screening population.
This is not a major concern, as the model can easily be applied
for thosewhom traditional screening indicates the need for inva-
sive testing, before angiography is performed; we are actively
collecting data across the complete set of US screening exami-
nations for another regional medical center to validate these re-
sults on a larger population.

Finally, it is important to note that as with other US tech-
niques, performance of the proposed method is reliant on the
ability to capture reliable waveforms. This is definitely a limita-
tion as the transplant hepatic artery is difficult to image. How-
ever, if this method becomes more proven and if it is used clin-
ically, sonographers will likely spend more time getting wave-
forms that can be input into the model. An area of future work
is also creating an algorithm to grade the reliability of wave-
forms before consumption by the model.

CONCLUSION AND FUTURE DIRECTION
Though this work, we have introduced an automated ma-

chine learning framework that improves the specificity for
predicting the presence of hepatic stenosis or occlusion utilizing
a spectral Doppler US waveform while maintaining a high sen-
sitivity. Implementing this prediction algorithm could reduce the
need for potentially unnecessary invasive procedures, while ac-
counting for the extremely high cost of false-negatives in the po-
tential organ loss.

However, this is only the first step in achieving clinical
utilization of this technology. Larger samples from national
transplant populations are required to rigorously determine a
singular set of model parameters that will be required for imple-
mentation of pretrained models into existing software.

We are concurrently exploring 2 approaches for extending
the methodology. First, we are working to integrate data captured
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. A, Spectral Doppler waveforms of the left and right hepatic artery in a 68-year-oldmanwith proper hepatic artery occlusion
on angiography. A force-plot highlighting a correct positive prediction of stenosis. Results were strongly influenced by the values of the
RI and left half-life with respect to the expected distributions of training data for stenosis-positive patients, whereas values of the SI and
some Fourier transformed PCA data provide weaker indications of a negative reading. B, Spectral Doppler waveforms of the left and
right hepatic artery in a 61-year-oldmanwith no hepatic artery occlusion or stenosis by follow-upCT. A force-plot highlighting a correct
negative prediction of no stenosis. Results were strongly influenced by the values of the RI, left half-life, and AT within the expected
distributions of negative/control patient's training data, whereas some values of the Fourier transformed PCA data provide weaker
indications of a stenosis reading. C, Spectral Doppler waveforms of the left and right hepatic artery in a 56-year-oldmanwith no hepatic
artery occlusion or stenosis by follow-up CT. A force-plot amisprediction of stenosis for a negative patient. Although the RI and left-half-
life values for this patient were supportive of a negative prediction, together, values of the SI and several dimensions of the Fourier
transformed PCA data outweighed the final result for a model prediction for a positive outcome. In all cases of force plots, the direction
(color) and size of each arrow are based on the relative contribution of the feature value. Red arrows pointing right indicate that, in
reference to the model training data, the feature value increases the probability of a stenosis prediction, whereas blue arrows pointing
left increase the probability of a negative prediction. The size of the arrow indicates a measure of magnitude for the contribution.
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from discrete imaging waveforms, such as studies with differing
probe positions, rather than aggregating data into a single in-
stance. This approach can potentially allow for fine-grained
interpretability by directing the reading radiologist to review
© 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2023 Wolters Kluwer H
specific imaging results. Second, we are looking to develop a
longitudinal component to the ensemble, where changes in pa-
rameter values between screenings can be used to better quan-
tify early signs of stenosis or occlusion for an individual.
www.ultrasound-quarterly.com 93

ealth, Inc. All rights reserved.



Feldman et al Ultrasound Quarterly • Volume 39, Number 2, June 2023

D
ow

nloaded from
 http://journals.lw

w
.com

/ultrasound-quarterly by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsI

H
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 06/02/2023
REFERENCES
1. Caiado AH, Blasbalg R, Marcelino AS, et al. Complications of liver

transplantation: multimodality imaging approach. Radiographics. 2007;27
(5):1401–1417.

2. Le TX, Hippe DS, McNeeley MF, et al. The sonographic stenosis index: a
new specific quantitative measure of transplant hepatic arterial stenosis. J
Ultrasound Med. 2017;36(4):809–819.

3. Dodd GD, 3rd, Memel DS, Zajko AB, et al. Hepatic artery stenosis and
thrombosis in transplant recipients: Doppler diagnosis with resistive index
and systolic acceleration time. Radiology. 1994;192(3):657–661.

4. Platt JF, Yutzy GG, Bude RO, et al. Use of Doppler sonography for revealing
hepatic artery stenosis in liver transplant recipients. AJR Am J Roentgenol.
1997;168(2):473–476.

5. Sidhu PS, Ellis SM, Karani JB, et al. Hepatic artery stenosis following liver
transplantation: significance of the tardus parvus waveform and the role of
microbubble contrast media in the detection of a focal stenosis. Clin Radiol.
2002;57(9):789–799.

6. Tamsel S, Demirpolat G, Killi R, et al. Vascular complications after liver
transplantation: evaluation with Doppler US. Abdom Imaging. 2007;32(3):
339–347.

7. Vit A, De Candia A, Como G, et al. Doppler evaluation of arterial
complications of adult orthotopic liver transplantation. J Clin Ultrasound.
2003;31(7):339–345.

8. Kalyan K, Jakhia B, Lele RD, et al. Artificial neural network application in
the diagnosis of disease conditions with liver ultrasound images. Adv
Bioinformatics. 2014;2014:708279.

9. Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging
of the liver. World J Gastroenterol. 2019;25(6):672–682.

10. Lau L, Kankanige Y, Rubinstein B, et al. Machine-learning algorithms
predict graft failure after liver transplantation. Transplantation. 2017;101(4):
e125–e132.

11. Spann A, Yasodhara A, Kang J, et al. Applying machine learning in liver
disease and transplantation: a comprehensive review. Hepatology.
2020;71(3):1093–1105.
94 www.ultrasound-quarterly.com

Copyright © 2023 Wolters Kluwer 
12. Mongan J, Moy L, Kahn CE, Jr. Checklist for Artificial Intelligence in
Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif
Intell. 2020;2(2):e200029.

13. Baraboo JJ, Dinakarpandian D, Chan SS. Automated prediction of hepatic
arterial stenosis. AMIA Jt Summits Transl Sci Proc. 2017;2017:58–65.

14. Geurts P, Ernst D, Wehenkel L. Extremely Randomized Trees.Mach Learn.
2006;63(1):3–42.

15. Probst P, Boulesteix A-L, Bischl B. Tunability: importance of hyperparameters
of machine learning algorithms. 2018. arXiv:1802.09596. https://ui.adsabs.
harvard.edu/abs/2018arXiv180209596P. Accessed February 1, 2018.

16. Olson RS, Cava WL, Mustahsan Z, et al. Data-driven advice for applying
machine learning to bioinformatics problems. Biocomputing. 2018;23:
192–203.

17. Efron B. Estimating the error rate of a prediction rule: improvement on
cross-validation. J Am Stat Assoc. 1983;78(382):316–331.

18. McKinney W. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference. 2010;445(1):51–56.

19. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods. 2020;17(3):
261–272.

20. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning
in Python. 2012. arXiv:1201.0490. https://ui.adsabs.harvard.edu/abs/
2012arXiv1201.0490P. Accessed January 1, 2012.

21. Moss H, Leslie D, Rayson P. Using J-K-fold Cross Validation to Reduce
Variance When Tuning NLP Models. In Proceedings of the 27th
International Conference on Computational Linguistics. Santa Fe,
NewMexico: Association for Computational Linguistics; 2018:2978–2989.

22. Lundberg SM, Lee SI. A unified approach to interpretingmodel predictions.
In: Luxburg Uvon, Guyon I, eds. NIPS'17: Proceedings of the 31st
International Conference on Neural Information Processing Systems. Red
Hook, NY: Curran Associates Inc; 2017:4768–4777.

23. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning
predictions for the prevention of hypoxaemia during surgery. Nat Biomed
Eng. 2018;2(10):749–760.
© 2022 Wolters Kluwer Health, Inc. All rights reserved.

Health, Inc. All rights reserved.

http://https://ui.adsabs.harvard.edu/abs/2018arXiv180209596P
http://https://ui.adsabs.harvard.edu/abs/2018arXiv180209596P
http://https://ui.adsabs.harvard.edu/abs/2012arXiv1201.0490P
http://https://ui.adsabs.harvard.edu/abs/2012arXiv1201.0490P

