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Abstract—The widespread application of machine learning
techniques to biomedical data has produced many new insights
into disease progression and improving clinical care. Inspired by
the flexibility and interpretability of graphs (networks), as well
as the potency of sequence models like transformers and higher-
order networks (HONs), we propose a method that identifies
combinations of risk factors for a given outcome and accurately
encodes these higher-order relationships in a graph. Using
historical data from 913,475 type 2 diabetes (T2D) patients, we
found that, compared to other approaches, the proposed networks
encode significantly more information about the progression of
T2D toward a variety of outcomes. We additionally demonstrate
how structural information from the proposed graph can be used
to augment the performance of transformer-based models on
predictive tasks, especially when the data are noisy. By increasing
the order, or memory, of the graph, we show how the proposed
method illuminates key risk factors while successfully ignoring
noisy elements, which facilitates analysis that is simultaneously
accurate and interpretable.

Index Terms—disease trajectories, sequence modeling, higher-
order networks

I. INTRODUCTION

In this era of digital medicine, computational analysis of

historical patient data is a foundational approach for generating

evidence-based insights into patient care, as well as developing

new knowledge surrounding the etiology, risk factors, and pro-

gression of health conditions [1], [2]. While each assessment

of an individual occurs at a discrete point in time, it is critical

to recognize that data collected from these observations are not

independent. The nature of human disease and the structure

of the healthcare system itself impose temporal dependencies

that connect information across an individual’s lifetime [3]–

[5]. As a result, appropriately utilizing historical data requires

the capability to model not only the incidence of prior events

but also the relationships among data over time.

To capture these complex interactions between events over

time, researchers have widely adopted supervised neural ar-

chitectures [6], [7]. In contrast to traditional, unsupervised

trajectory models such as latent growth curves, group-based

trajectory models, and temporal clustering [8], [9], these

techniques are designed to directly learn relationships between

patterns in sequential data and outcome incidence. Building

on successes of recurrent neural network (RNN) architectures

∗corresponding author

like long short-term memory (LSTM), transformer models

have achieved state-of-the-art results in modeling sequence

data by leveraging innovations such as self-attention and

positional encodings [10], [11]. In the healthcare domain,

models such as BEHRT and Med-BERT have translated the

successes of BERT (Bidirectional Encoder Representations

from Transformers) to tasks like disease prediction [12]–[14].

While these models have demonstrated a strong ability to

predict if a future event will occur, they fail to provide insight

surrounding how the outcome was reached.

The process, however, of systematically identifying these

pathways across a range of health conditions presents a signifi-

cant challenge. As electronic health records collect larger and

more heterogeneous volumes of personalized data, temporal

patterns become obfuscated by an intractable number of paths

connecting information collected over time. This challenge is

compounded by the fact that real-world data often contains

gaps along relevant sequences, barring progression in a per-

fectly linear fashion, which can introduce significant amounts

of noise to a trajectory. For example, diagnoses made during an

emergency room visit following a car accident may interrupt

sequences within a multi-year trajectory of congestive heart

failure. While attention mechanisms can be used to capture

relationships of data to an outcome, the specific dependencies

between steps in a sequence remain difficult to extract, as

the weights from the local interactions across each distinct

attention head oversimplify the complex set of multilayer

computations that are used to make a given prediction [15].

Seeking more efficient and interpretable representations of

sequence data, researchers have leveraged graphs (networks) to

disentangle these overlapping and heterogeneous relationships.

This approach has found success in many tasks such as

predicting future comorbidities [16], inferring causality [17],

identifying disease subtypes [18], and trajectories [19], [20].

Despite their advantages, graphs often underfit the complex

relationships that govern trajectories [21], [22], as they operate

on a first-order Markovian paradigm, such that the next step

in a sequence depends on probabilities from the current state

(Fig 1). To address this, higher-order networks (HONs) were

proposed to detect dependencies (i.e., conditional probabili-

ties) across multiple steps in a sequence, and encode those

dependencies in a graph [23]. Using this approach enables

far more robust and interpretable trajectories to be built in
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Fig. 1. Given a set of disease trajectories (top), a FON G1 cannot capture the higher-order dependency that C is more likely to lead to heart failure when it
is preceded by A. A HON with k = 2 (G2) addresses this problem by creating the conditional nodes C|A and C|B. However, when the noisy diagnoses X
and Z are present (bottom), G2 fails to detect the importance of C|A and C|B. Our proposed model, G∗

2 , addresses this problem by explicitly conditioning
paths on the outcome variable and enabling them to skip noisy diagnoses. Edge weight is represented by arrow thickness.

a computationally feasible manner. HONs and similar ap-

proaches have found early applications in several tasks both

within and beyond the healthcare domain, including modeling

diabetes comorbidities [24], anomaly detection for medication

order [25], and many more [26]–[29]. Unfortunately, HONs

exhibit a fundamental limitation, as they capture transitions

between steps in a strictly linear fashion. Thus, without know-

ing a priori which data are relevant for a particular pathway,

existing HONs cannot detect which steps are most relevant for

a particular long-term outcome, and likewise cannot robustly

handle the noisy probabilities that we observe in real-world

health data.

Inspired by the generalizability and interpretability of

graphs, this manuscript proposes a novel, supervised imple-

mentation of a HON to address exactly this. First, it introduces

a method for extracting the steps along a trajectory that

are most informative of an outcome, even in the presence

of noisy or irrelevant subsequences. Next, it demonstrates

how the interpretable path information learned by our noise-

resilient model can be integrated into state-of-the-art trans-

former models like BERT, to further improve already strong

estimates of outcome probability. Additionally, it shows that

our proposed method can be used to solve more general

problems, like isolating key risk factors along a trajectory

of diagnoses. Ultimately, the manuscript concludes with a

discussion regarding the future extensions of the proposed

method for complex care patterns and translation into other

clinical scenarios.1

II. HIGHER ORDER NETWORKS: AN OVERVIEW

To facilitate analysis, digital health data have commonly

been structured to mirror paper records by characterizing an

individual as a set of discrete data elements. These elements

can then be mapped easily to transactional database structures

for which statistical and machine-learning methods have pre-

dominantly been developed. Although possible, the ability to

model conditional relationships between two (or more) events

requires large and highly sparse arrays of data representing

pre-defined combinations of all data elements. Consequently,

network analysis has gained recognition due to its ability to

model observed co-occurring data without defining the entire

matrix of possibilities. To do so, networks typically utilize

directed graphs. Yet these representations operate under a first-

order Markovian paradigm, implying transitions to a future

next step are a direct result of the current position. This limits

the capacity of these networks to capture temporal trends and

explicate progression. For example, Figure 1 shows a typical

graph G1, or a first-order network (FON). In these disease

trajectories, the transition A −→ C is the key predictor of heart

disease; however, because graphs rely on transitive paths of

pairwise connections, the structure of G1 cannot account for

this.

To address the limitations of FONs, Xu et al. [23] pro-

posed higher-order networks (HONs), which create conditional

1Code is publicly available at https://github.com/sjkrieg/growhonsup.
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nodes (e.g., B|A, read as B given A) to encode higher-

order dependencies (i.e., conditional probabilities in sequence

data) in a graph [23], [28]. Intuitively, a HON is a graph

with memory. The difference between a conditional node like

B|A and its lower-order relative B is typically quantified via

relative entropy over the transition probabilities of its future

states [30]. For example, consider a diagnosis of hypertension

(ICD9 code 401). When this diagnosis is preceded by a

diagnosis of renal failure (ICD9 code 584), it is more likely

to be succeeded by other kidney-related diseases [24]. If this

change in probability is sufficiently high across all diagnoses,

the relative entropy would be high, and the HON would

create a conditional node 401|584. While HON models have

produced new insights in many domains, they have been

limited to unsupervised learning settings. When considering

disease trajectories, we are often interested in studying not just

divergent probabilities at each step, but differences in outcomes
across all patients. For example, if we are studying factors

that lead to heart disease, even if the transition probability

distribution of 401|584 differs from 401, there is no guarantee

that this difference provides any meaningful information about

the risk factors or progression of the disease. Further, although

the conditional nodes in a HON allow it to consider more

complex interactions between historical data, prior models a

strictly linear, meaning that once data are entered into the

trajectory, a HON cannot detect or skip irrelevant elements. As

the HON G2 exemplifies in Figure 1, this results in fragmented

paths that often fail to capture the key relationships that drive

the outcome. Constructing a HON in a supervised learning

setting thus poses the following key challenges:

1) How to define and detect outcome-driven higher-order

dependencies (i.e., how to define the set of conditional

nodes).

2) How to encode the higher-order dependencies (i.e., how

to connect the conditional nodes).

III. METHODS

A. Preliminaries

Let S = {S1, S2, ..., Sn} be a set of observed trajectories,

where each Si = 〈s1, s2, ..., sm〉 is a sequence of entities such

as diagnosis codes. Let A =
⋃S denote the set of entities

across all sequences. In the supervised learning setting, we ad-

ditionally consider an outcome or class variable Y = {0, 1}n.

We also use the vector notation y = (y1, y2, ..., yn) to denote

the observations of Y . To model the system, we can create a

graph, or network, G1 = (V1, E1) where the node set V1 = A
and the edge set E1 is the set of node pairs (u, v) ∈ V1 × V1

that are adjacent elements in at least one Si. To represent Y
within the graph, we also create a sink node (i.e., a node with

no out-edges) for each possible outcome.

In a HON Gk = (Vk, Ek), Vk ⊆ Ak is a set of conditional

nodes and k > 1 denotes the maximum order of the graph.

We denote each u′ ∈ Vk as a tuple, i.e., u′ = (a0, a1, ..., am)
where m <= k. We refer to am as the base node and

each other aj as conditions, and in practice use the notation

u′ = am|a1, ..., am−1 to emphasize the fact that u′ encodes

a conditional distribution. In other words, k indicates the

maximum number of conditions that can be encoded in a single

node. Like E1, the edge set Ek ⊆ Vk×Vk is a set of node pairs;

however, because each u′ ∈ Vk represents multiple entities,

each pair of nodes (u′, v′) ∈ Ek naturally represents a higher-

order interaction while remaining a 2-tuple. Edges are directed

such that (u, v) �= (v, u) and weighted via wk : Ek −→ R≥0,

determined by the population prevalence and where 0 indicates

that there is no edge from u to v.

B. Detecting outcome-driven higher-order dependencies

To address the key challenges presented above, we first

define a measure of conditional entropy on a generic graph

G = (V, E) with respect to Y . This allows us to identify and

encode the conditional nodes that we expect to reduce this

entropy. First, we compute the class entropy Y according to

the standard formula:

h(Y ) = −
∑

y∈Y
P (y)log2P (y). (1)

To compute class entropy with respect to G, let us first

assume that for each of the possible outcomes of Y , a

corresponding sink node exists in G (though, for notational

simplicity, we will refer to V as though it does not include

these sink nodes). Let πG : A −→ Y denote a random

walker that begins at a random first-order node and continues

traversing random edges in G until it reaches one of the sink

nodes. We define the conditional entropy of Y given G as

follows:

h(Y |G) = −
∑

u∈A
P (u)

∑

y∈Y
P (πG(u) = y)log2P (πG(u) = y),

(2)

where P (u) =
∑

v∈N(u) w(u,v)
∑

(u,v)∈E w(u,v) (i.e., the normalized, weighted

out-degree of u) is the probability that the random walker

starts at u. We can easily estimate P (πG(u) = y) by sampling

random walks on G. Finally, we can formulate the information

gain of G with respect to Y as:

IG(Y,G) = H(Y )−H(Y |G), (3)

While the combinatorial nature of G means that we cannot

optimize IG(Y,G) directly, we can do so indirectly by creating

conditional nodes that will reduce the entropy of πG . Since G
is a summary of the observed paths S , nodes that provide

meaningful information about Y with respect to S will also

reduce IG(Y,G). Given a candidate conditional node u′ ∈ Ak,

we can compute its conditional entropy according to:

h(Y |u′) =
∑

y∈Y
P (y, u′)log2

P (y, u′)
P (u′)

, (4)

where P (u′) is the probability that u′ is a subsequence of

some Si, i.e., that each ai ∈ u′ is in Si and in the same
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relative order. Finally, we compute the information gain (IG)

of u′ with respect to Y as:

IG(Y, u′) = h(Y )− h(Y |u′), (5)

This formulation allows us to compute information gain

for each candidate u′, but does not tell us how to interpret

the computed value. Unsupervised HON methods use a user-

defined threshold function, but this approach is ad hoc [28].

To more objectively determine if the IG(Y, u′) value for a

candidate conditional node occurs due simply noise, rather

than a true dependency, we can utilize a Fisher-Yates shuffle.

To do so, we build a reference distribution for each candi-

date u′ by randomly permuting the outcome vector (y) 100

times and recomputing the information gain. We then directly

compute the likelihood that the observed IG(Y, u′) is greater

than expected from a distribution where the outcome has been

randomly assigned. Using a t-statistic for IG(Y, u′), which

we denote as tu′ , we construct the set of nodes as follows:

Vk = A
⋃

{u′ ∈ Ak : tu′ ≥ α}, (6)

where α denotes the standard score threshold, which we

default to 1.0.

C. Skipping noisy data

After constructing Vk, we must determine which nodes

to connect; i.e., how to construct Ek. Although prior HON

methods construct edges in a strictly linear fashion [28], [30],

the supervised nature of our proposed approach allows us to

focus the growth of the network to consider subsequences

rather than substrings (i.e., where each ai ∈ u′ is directly

adjacent in Si). This is demonstrated in our formulation of

Eq. 4, where we compute IG(Y |u′) in a way that does not

enforce a strict adjacency constraint and enables the model to

“skip” noisy diagnoses. We construct Ek similarly. Specifically,

for each Si in S, we add edges such that each node u′ ∈ Vk

that is also a subsequence of Si is connected to every node

that succeeds it in Si, including the outcome (sink) nodes.

D. Scalability trade-offs

Although the approach above removes the linear constraint

and thus allows for much greater model expression, it has

the drawback of increased computational cost, since each Si

has
∑k

j=1

(|Si|
j

)
subsequences to consider. In other words, the

proposed method scales poorly with the combination of larger

k and longer sequences. If we did not allow for skip steps, we

would only need to consider
∑k

j=1 (|Si| − j) subsequences

for each Si. Some form of pre-pruning would mitigate this

problem, but risks missing useful higher-order combinations.

Fortunately, computing Eq. 6 is embarrassingly parallelizable.

Additionally, for larger data sets, computational overhead

could be reduced by considering a minimum frequency thresh-

old x such that each u′ is only tested if it appears at least x
times in S. Future work could explore additional strategies for

increasing the sparsity of these skip connections.

TABLE I
REFERENCE FOR ICD9 CODES IN THE T2D DATA SET.

Code Description

250 Diabetes mellitus
401 Essential hypertension
414 Ischemic heart disease
428 Congestive heart failure
458 Hypotension
461 Sinusitis
462 Pharyngitis
584 Renal failure
585 Chronic kidney disease

IV. EXPERIMENTS

A. Data

For the experiments presented in this work, we leveraged a

longitudinal claims dataset for type 2 diabetes (T2D) patients

in the state of Indiana. The complexity of structural rela-

tionships between T2D comorbidities makes it a particularly

compelling use case [31], and these particular data have been

utilized in prior HON works to allow for direct comparison

to existing baselines [24]. Each Si represents a patient, and

each entity in Si is an ICD9 major code representing that

patient’s diagnosis history. In total, the data comprises 908

distinct ICD9 codes across 913,475 distinct patients, all of

whom received either a clinical diagnosis of T2D, reported

a laboratory glycated hemoglobin (HbA1C) test result of at

least 6.5%, or was prescribed at least one Medi-Span-defined

anti-diabetes medication. After preprocessing according to

the procedure proposed by [24] (discarding E and V codes,

removing repeated diagnoses), each trajectory contained an

average of 14.3 diagnoses.

Table I provides a summary of the diagnosis codes we

frequently reference. Our experimentation centers on three

patient outcomes that have been relevant to other studies of

T2D trajectories: congestive heart failure (ICD9 code 428),

hypotension (ICD9 code 458), and acute renal failure (ICD9

code 584) [24], [31]–[33]. For each of these outcomes, we

performed these additional preprocessing steps:

1) We assigned a positive label to all patients for whom the

outcome code appears in their trajectory, and a negative

label to all others.

2) For patients with a positive outcome, we removed both

the outcome code and any subsequent diagnoses. This

is because we are interested in predicting the outcomes,

i.e. modeling the events that precede the outcome.

3) We discarded any trajectories with fewer than 5 diag-

noses preceding the outcome.

Table II summarizes the final set of trajectories for each

outcome, which we then partitioned into training, validation,

and testing sets according to an 80/10/10 ratio. In all cases,

we built graphs and trained predictive models using only the

training set. For predictive tasks, we used the validation set to

select the best hyperparameters and report only the results as

measured on the testing set.
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TABLE II
SUMMARY OF OUTCOMES FOR T2D PATIENT TRAJECTORIES.

Outcome # train/val/test P(Y=1) h(Y) |V1| |E1| |V∗
2 | |E∗

2 | |V∗
3 | |E∗

3 | |V∗
4 | |E∗

4 |
Heart failure 460,179/57,523/57,522 0.1068 0.4904 906 281k 10.6k 6.7m 16.4k 9.8m 18.2k 10.8m
Hypotension 473,736/59,218/59,217 0.0414 0.2485 906 289k 15.3k 9.9m 33.3k 27.4m 45.6k 36.0m
Renal failure 472,800/59,100/59,100 0.0480 0.2777 906 289k 13.9k 8.8m 29.8k 27.3m 45.2k 39.2m

B. Tasks and experimental setup

To robustly assess the proposed model, we designed a series

of analyses that quantify how much information each graph

provides about an outcome and demonstrate their utility for

traditional outcome-prediction tasks. For the proposed HON,

we set k = {2, 3, 4}, where 4 is both the highest value with

which we could compute our model efficiently and the point

at which higher-order dependencies saturated in prior work

on HONs of T2D disease trajectories [24], and constructed

G∗k for each of the aforementioned outcomes. We evaluated

multiple graphs as baselines, including a FON (G1), existing

unsupervised HON (G4) [30], and ablated versions of the

proposed HON without the skip-step (G′4).

1) Information Gain of Graphs and Paths: We first evalu-

ated how well the global structure of each graph corresponded

to meaningful disease pathways. To do this, we quantified the

overall information of each graph with respect to each outcome

using our formulation of IG(Y,G) (Eq. 3). Specifically, for

each first-order node, we used a random walker to sample

10,000 paths. For each path, the walker began at the corre-

sponding first-order node and continued traversing the graph

until reaching one of the outcome (sink) nodes. We used these

paths to compute h(Y |G) (Eq. 2), and subsequently IG(Y,G).
We repeated this procedure 10 times for each graph and

reported the average and standard deviation. Metrics produced

in this way are meaningful as they quantify the amount of

information each graph provides as related to the purity of

paths in reaching an outcome.

Next, we analyzed the local structures of our proposed

model, G∗, by extracting the most informative nodes and paths.

Using the same random walking procedure, we computed

IG(Y, u′) (Eq. 5) for all nodes (including conditional nodes)

in each graph. To compute the information gain for a path, we

calculated the mean IG(Y, u′) for each u′ in the path. This

procedure allows us to validate whether the informative nodes

and paths in G′4 match known clinical relationships between

diagnoses and outcomes.

Finally, we compared both the existence and informative-

ness of paths leading to a positive outcome to assess if the

proposed supervision and skip-step resulted in meaningful

differences in learned network structure. Utilizing 1,000,000

randomly sampled paths leading to the heart failure outcome,

again extracted from the random walker, we identified the most

informative trajectory (defined by the multiplicative weight

of IG(Y, u′), as calculated above, for each node u′ in the

trajectory) beginning at each of the 907 ICD codes in the

dataset. We then calculated: 1) the percentage of paths that

existed exactly as sampled from G∗ in each baseline network,

and 2) the percentage of paths for which the IG in G∗ was

higher than that in the comparison network. For paths that

could be not exactly reproduced in a comparison network,

we recursively pruned conditions from the higher-order nodes

and attempted to continue the path. For example, if an edge

from 403 to 414|403 did not exist, we attempted to traverse

the baseline network using the edge from 403 to 414 directly.

If a path was still unable to be found, no comparison was

made to prevent biased denominators. We note that as the

multiplication of IG across a trajectory will be biased based

on path length, we grouped paths based on their exact length

(2 through 6) before performing sensitivity analysis for “top”

paths.

2) Outcome Prediction: Second, we explored the use of G∗4
for a classification task. Although a HON provides increased

interpretability of trajectories, it is generated at the population

level and not directly applicable to the prediction of an indi-

vidual’s outcome. As such, this analysis sought to determine

how trajectories learned by a HON can be integrated into a

supervised classification framework as compared to state-of-

the-art sequence models (i.e., BERT-based models). In this

case, the sequence of diagnoses in each disease trajectory

serves as input to a model, whose job is to map the trajectory

to a binary outcome (e.g., 1 for heart disease, and 0 for no heart

disease). Our baseline, BEHRT, achieves this by 1) mapping

each token (entity) from the trajectory to an embedding vector,

and 2) passing the token embeddings through a stack of

transformer encoder blocks [12]. Following the procedure

proposed by the seminal BERT model [11], BEHRT pre-

trains the encoder blocks via token masking and a stack of

decoder blocks. Slight variants of this approach have been

proposed specifically for disease prediction [13], [14], but

differences among them are minor, so we consider BEHRT

as a representative baseline. Our experiments used the public

code and hyperparameters as published by [12].

To classify trajectories using a graph G, we map the problem

to a subgraph classification task. Given an input trajectory, we

use a graph neural network (GNN) to compute an embedding

vector for each node. When k > 1, we map tokens to

higher-order nodes whenever possible, prioritizing combina-

tions that are temporally close in the trajectory. For example,

given an input trajectory 〈..., 461, ..., 250, ..., 401, ...〉, if node

401|250 ∈ V∗4 , then we use it instead of node 401 to compute

the GNN embedding for token 401. If 401|250 /∈ V∗4 and node

401|461 ∈ V∗4 , then we use 401|461. Following BEHRT, we

pass the GNN embeddings forward through a stack of trans-
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former encoder blocks to compute the outputs. Essentially,

this means that we replace BEHRT’s basic, fully-connected

embedding layer (step 1 above) with a GNN, which learns

embeddings mediated by the given graph structure. We refer

to this model as Transformer/G. Additionally, we considered

a model Transformer/G+Embs, which uses a concatenation of

the fully connected embedding layer and the GNN embeddings

as input to the encoder block. Intuitively, this approach can

be described as a modification of BEHRT that uses embed-

dings from G to augment the token embeddings. To evaluate

the graph-based models, we used a simple two-layer graph

convolutional network (GCN) as the GNN. For all models,

we used 128 as the token embedding size. This means that

to avoid incurring an unfair advantage due to using more

parameters, for Transformer/G+Embs, the output dimensions

for the GCN and fully connected embedding layer were 64

each. We trained all models using the Adam optimizer, with a

learning rate of 0.0001 and a batch size of 32. We trained

and tested each model 10 times, and reported the mean

and standard deviation of the area under the precision-recall

curve (AUPRC), a standard measure of binary classification

performance in class-imbalanced settings [12], [34].

TABLE III
SUMMARY OF TOY (PATTERN MATCHING) PROBLEMS.

Name Diagnosis Pattern P(Y=1)

Toy 1 {461, 462, 463, 464, 465, 466} −→ 401 −→ 250 0.0475
Toy 2 401 −→ {461, 462, 463, 464, 465, 466} −→ 250 0.0644
Toy 3 401 −→ 250 −→ {461, 462, 463, 464, 465, 466} 0.0736

Ultimately, we extended the analysis of the classification

task to directly assess performance on known trajectories

with noisy labels. To accomplish this using the T2D tra-

jectories, instead of labeling each trajectory according to a

clinical outcome, we assigned labels according to whether

the trajectory contained a specific pattern of diagnosis codes.

For each of these patterns, which are summarized in Table

III, we labeled each trajectory as positive (1) if it matched

the pattern (while allowing for any number of intermediate

diagnoses), and negative (0) otherwise. The particular codes

we chose to define these patterns were arbitrary and based on

prevalence in the data set (i.e., to ensure that each pattern had a

sufficient number of positive examples) rather than on known

T2D comorbidities or outcomes. This classification problem

is thus conceptually simple but contains the kinds of higher-

order dependencies that are prevalent in real-world systems

yet non-trivial for many sequence models to represent [23].

We also conducted experiments in which the trajectories were

subject to various thresholds of label noise. Here, we denote

as noise ratio the probability that a trajectory matching the

pattern was randomly assigned a negative label. For example,

at a noise ratio of 0.4, only 60% of the matching trajectories

were assigned a positive label, while the remaining 40% were

assigned a (noisy) negative label. Label noise is ubiquitous

in real-world applications—for example, in disease trajectory

studies, a patient may appear to have a negative outcome only

because the positive outcome has not yet been diagnosed and

recorded—so it is essential to understand the effect of this

type of noise on model performance [35], [36].

V. RESULTS

TABLE IV
IG(Y,G) FOR EACH GRAPH AND DATA SET. REPORTED VALUES ARE THE

MEANS AND STANDARD DEVIATIONS OF 10 ITERATIONS OF THE RANDOM

WALKING PROCEDURE. BOLD FONT INDICATES THE BEST RESULT FOR

EACH DATA SET.

Heart failure Hypotension Kidney failure

G1 0.0001 ±0.003 0.0037 ±0.002 0.0044 ±0.002

G4 0.0097 ±0.003 0.0138 ±0.001 0.0159 ±0.003

G′
4 0.0046 ±0.002 0.0011 ±0.001 0.0123 ±0.002

G∗
2 0.0349 ±0.002 0.0324 ±0.002 0.0452 ±0.004

G∗
3 0.0782 ±0.003 0.0661 ±0.002 0.0780 ±0.002

G∗
4 0.0892 ±0.004 0.0723 ±0.001 0.0836 ±0.003

A. Information Gain of Graphs and Paths

Table IV presents IG(Y,G) for each graph and outcome.

For all outcomes, we found that only those paths sampled

from G∗ provided a substantial increase in the amount of

information gain, indicating that the overall purity of the paths

was highly distinct between those patients found to have the

outcome and those who did not. Notably, despite being grown

based on the relationship to the outcome, G′4 did not perform

overly well. This further suggests that without the ability to

skip irrelevant diagnoses, even an outcome-driven HON model

cannot detect and encode the most informative paths.

TABLE V
CLASSIFICATION PERFORMANCE (AUPRC). BOLD FONT INDICATES THE

BEST RESULT FOR EACH DATA SET.

Model Heart failure Hypotension Kidney failure

BEHRT 0.372 ±0.00 0.133 ±0.00 0.222 ±0.00

BEHRT/G1 0.305 ±0.02 0.109 ±0.01 0.172 ±0.01

BEHRT/G1+Embs 0.375 ±0.00 0.134 ±0.00 0.228 ±0.00

BEHRT/G∗
4 0.321 ±0.01 0.115 ±0.01 0.190 ±0.01

BEHRT/G∗
4+Embs 0.386 ±0.01 0.144 ±0.01 0.237 ±0.01

Looking next to the comparison of sampled heart failure

paths in G∗4 with other graphs, Figure 2A, demonstrates that, on

average, well below 50% of paths leading to heart failure in the

proposed graph could be replicated in any of the comparison

graphs. Note that a path of length 1 (i.e., a single node)

will always have a 100% match for all networks, as there

is always a non-zero probability of reaching the outcome of

interest from any given starting point. Unsurprisingly, shorter

trajectories had a higher prevalence of overlap across the

various network configurations. However, a small subset of the

best paths for rare and/or unrelated root nodes were found to

contain all first-order steps, allowing for some exact matches

to the FON beyond a path length of 2. Critically, even after

pruning higher-order dependencies at each step, we were only

able to recover matches for just over 74% of the paths in
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G1, 62% in G′4, and only 40% in G4 across all sensitivity

analyses, indicating that edges learned by G∗4 never received

enough support to even be grown at a first-order in these earlier

methods. Additionally, the low match rate for the unsupervised

HON G4, even compared to the FON G1, demonstrates how

the dependencies detected by an unsupervised model cause

the network to overfit on fragmented trajectories instead of

encoding meaningful paths.

Moving beyond the simple existence of paths, Figure 2B,

illustrates that the individual paths in G∗4 as compared to those

extracted from baseline networks (evaluating exact matches

when possible and, alternatively, pruned matches), as denoted

by the average purity of the path in reaching a given outcome.

Again, shorter paths have more similar performance across

multiple networks, because the statistical support for paths that

only include 1 or 2 nodes before an outcome is likely to be

also found in the baseline networks. However, for paths with a

length of at least 3, G∗4 can generate paths with superior purity

in over 90% of cases.

B. Outcome Prediction

As Table V shows, on the classification task, we ob-

served consistent performance trends across all outcomes.

First, we note that the transformer with only GNN embed-

dings (Transformer/G) significantly underperformed relative to

BEHRT using either G1 or G∗4 . On the other hand, augment-

ing the inputs with graph embeddings consistently improved

transformer performance, especially with G∗4 . With a more

expressive GNN implementation, these improvements would

likely be even more substantial [29].

Figure 3 summarizes the results of the classification exper-

iments on the toy pattern matching task, which illuminate a

key reason for the effectiveness of G∗4 . At a noise ratio of

0, the task was trivial due to the ability of the transformer

to match the higher-order patterns, and both models achieved

AUPRC ≥0.999. While the noise ratio remained below 0.5,

the performance of both models was virtually identical, so

these are not shown to preserve scale. As the noise ratio

increased, AUPRC consistently decreased for both models.

While this was expected, we also noticed that a performance

gap emerged as the noise ratio surpassed 0.5. At the noisiest

ratio of 0.9, the differences in AUPRC were relatively large in

favor of Transformer/G∗3+Embs over BEHRT: 0.112 and 0.053,

respectively, on Toy 1 (+113%); 0.152 and 0.096, respectively,

on Toy 2 (+58%), and 0.122 and 0.075, respectively, on Toy 3

(+62%). These results suggest that at least one of the reasons

that Transformer/G∗3+Embs performs well on the outcome

prediction tasks is that the embeddings from G∗3 help improve

the robustness of the encoder against label noise.

VI. DISCUSSION

This work has introduced a novel implementation of higher-

order networks able to extract meaningful trajectories towards

an outcome of interest even in the presence of noise commonly

found in real-world data. As evidenced by the results above,

simply replacing the objective function for a HON model to

enforce the growth of paths that maximize purity in reaching

an outcome is not sufficient for detecting the most informative

paths. This is hardly surprising in a healthcare context; disease

trajectories encompass a variety of diagnoses elicited from

various encounters within the health system, many of which

are unlikely to be relevant to the outcome of concern. In

this case, these noisy intermediate diagnoses only function to

reduce the statistical support for the relevant combinations of

diagnoses, making it less likely that a model can identify them.

We see strong evidence of this phenomenon in the Informa-
tion Gain analysis (Section V-A). As expected, the supervised

HON without a skip step (G′4) had the highest percent of

matching paths to our proposed model, as both are designed

to grow paths and create higher-order dependencies using the

same objective function. However, less than 20% of paths

≥4 matched exactly without the inclusion of the skip-step,

strongly illustrating how noise from unrelated diagnoses can

fragment trajectory growth. Looking deeper, we note that 60%

of the paths extracted from the proposed network could be

reconstructed in this non-skip step network by pruning higher-

order edges; i.e. edges between relevant diagnoses were cre-

ated, but conditional higher-order paths were not constructed

given noise. As it is clear these reduced paths are not as

informative (Figure 2B), investigation of higher-order nodes

can provide additional insight into what information is lost.

In addition to analyzing paths in G′4, we can also study

individual nodes. As Table II shows, for the heart failure,

hypotension, and renal failure outcomes, the proposed method

created 17,325, 44,648, and 44,307 conditional nodes, respec-

tively, in each G∗4 . In the case of heart failure, 27% of these

were second-order nodes, 62% were third-order nodes, and the

remaining 11% were fourth-order nodes. The five most com-

mon conditions were chronic ischemic heart disease (ICD9

code 414), essential hypertension (401), hypercholesterolemia

(272), cardiac dysrhythmia (427), and anemia (285)—all of

which are known to be strongly correlated with heart failure

[37], [38]. Of the 17,325 conditional nodes, 8,372 (48%) were

conditioned one at least one of these five diagnoses. We ob-

served similar patterns by analyzing the individual nodes with

the highest IGs. Almost all these nodes used a base diagnosis

of cardiomyopathy (IC9 code 425) in conjunction with various

conditions; for example, 425|511|427 (cardiomyopathy given

pleurisy given cardiac dysrhythmia) produced the highest IG

(0.051). Besides validating that the discovered nodes are truly

informative of the heart disease outcome, examining these

nodes highlights certain combinations of risk factors and drive

further investigation.

Turning next to the utilization of the identified trajectories,

the Outcome Prediction analysis (Section V-B) provided a

novel approach to improve the interpretability of sequence

prediction tasks while maintaining predictive performance.

The interplay between these factors is particularly relevant

in health-centric applications, where the utility and adoption

of computational models rely not only on a measure of

accuracy but increasingly on an ability to investigate the

factors underlying output, which may be used to guide clinical
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Fig. 2. Comparison of paths towards heart failure (ICD9 code 428) sampled from G4. Panel (A) shows the percentage of exact matches between paths of
length 1-6, while panel (B) shows the percentage of paths for which the Information Gain (IG) was higher in G4.

Fig. 3. Classification results on toy trajectories at various levels of label noise. Shading represents the standard deviation of 10 runs for each.

analyses and recommendations [39]–[41].

Given the established state-of-the-art predictive performance

and widespread availability in software packages, deep learn-

ing transformer architectures are unlikely to be replaced as a

standard model for sequence prediction tasks. Yet, it is clear

there is no straightforward way for BEHRT or similar models

to isolate the trajectories that drive its outputs. For example,

while we can inspect the attention weights to identify that

a diagnosis code 414 has a probability of transitioning to

250, and that 250 then has some probability of reaching a

positive outcome, this transitive interpretation cannot account

for the complex dependencies learned by the model over all

combinations of diagnoses and may be misleading [15]. As a

result, we sought to augment these models rather than replace

them entirely.

By utilizing a graph to augment the embeddings used for

prediction, we can easily and directly examine the relation-

ships between learned edges to compute, for example, the

probability distribution over πG (Eq. 2). We can use this

distribution to understand how different risk factors could

contribute to a prediction. We know by our definition of Eq.

6 that grown edges must provide some information about

the probability of reaching the outcome. In the context of a

higher-order network, the fact that each node can represent the

conditional probability across multiple entities helps us then to

understand how these combinations of comorbidities can affect

outcome probabilities in a way that transcends the previously-

discussed limitations of transformers [30]. For example, the

node 425|511|427 produced the highest IG with respect to

heart failure in G′4 (0.051). On their own, we observed IGs of

0.022 and 0.004 for cardiomyopathy (425) and pleurisy (511),

respectively, both ranking within the top 15 most informative

first-order nodes. For cardiac dysrhythmia (427), on the other

hand, we only observed an IG of 0.001—rank 76 of the 906

first-order nodes. And while we saw an increase in IG for

the second-order nodes 425|511 (0.026) and 511|427 (0.010)

when compared to their first-order counterparts 425 and 511,

respectively, these values are still much smaller than the

information provided by 425|511|427. The progression of a

patient over this third-order sequence of diagnoses thus seems

to increase their probability of reaching heart failure in such

a way that is more than the sum of its first or second-order

parts. This means that the ability to examine such higher-order

combinations and probabilities directly is a critical piece of a

truly interpretable model.

Further, we are often led to believe there must be a trade-

off between accurate, complex models and those that are

interpretable. As a result, a simple non-inferiority of the

augmented network in terms of predictive performance would

be valuable. However, as we examine the results of this

augmentation, we find it promising that results not only equal

but slightly exceed that of the existing transformer. Other

studies have noted that a transformer’s dense embedding layer

is equivalent to a fully connected graph and characterized the

learning process of a transformer as learning the edge weights

of an unspecified graph [42]. Therefore, it is not surprising
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to see that such a model would overfit on noisy patterns,

where the additional information gained by the more targeted

graph provides useful information in learning weights for the

transformer model. This idea is supported by the results of our

analysis of the toy paths. We see a clear pattern in which the

augmented graph+transformer model improves performance as

the proportion of noise injected into a path increases. Such

noise is abundant in healthcare data because of causes like

time (e.g., a T2D patient has not yet been diagnosed with

heart disease) and false negatives, so robustness to it is an

extremely useful characteristic of any model.

Limitations: There are several limitations to the work

presented here. First, although a large dataset was used to

assess the performance of the proposed methodology on three

distinct disorders and three toy examples, we recognize the

data used only claims from a single state. Second, this model

evaluated only trajectories of diagnoses. It is unlikely diagnosis

history is the only factor driving a patient to reach a specific

clinical outcome. As such, performance may be improved with

the inclusion of a more comprehensive set of clinical factors

(procedures, laboratory results, etc.). Current work is under-

way by the study team to extend the methodology to account

for sequences of heterogeneous nodes. Finally, it is becoming

increasingly important to consider the computational cost of

the models we build. In some cases, the marginal improve-

ments of the proposed model on the classification performance

(Table V) may not be worth the additional computation cost

of constructing G∗3 and using a GNN.

VII. CONCLUSION

Given the way healthcare data are captured and utilized,

noise is the norm rather than the exception. Drawing on

the strengths of state-of-the-art work in EHR data analysis,

disease trajectory modeling, and higher-order networks, this

manuscript proposed a new method for constructing a HON in

a supervised learning context. Different from prior approaches,

the proposed method identifies the higher-order dependencies

that are most informative of an outcome while skipping noisy

or irrelevant steps. Experiments demonstrated that HONs con-

structed with the proposed method can provide significantly

more information about an outcome than other graphs, and can

successfully detect and encode dependencies that correspond

to known comorbidities and disease pathways in T2D patients.

Additionally, the proposed method’s robustness to noise can

be used to augment transformer-based models, marginally

improving their performance on a disease prediction task when

label noise is present. These results suggest several fruitful

avenues for future work, such as improving the scalability

of the proposed method to higher orders and longer trajecto-

ries, incorporating more granular information from trajectories

(e.g., time intervals and heterogeneous/multimodal data) into

the HON structure, and designing more sophisticated methods

for using information from the HON to augment neural

sequence models.
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[42] P. Veličković, “Everything is connected: Graph neural networks,” Cur-
rent Opinion in Structural Biology, vol. 79, p. 102538, 2023.

20

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 08,2025 at 19:37:09 UTC from IEEE Xplore.  Restrictions apply. 


